Difference between revisions of "1956 AHSME Problems/Problem 7"

(Solution)
(Solution)
 
(3 intermediate revisions by the same user not shown)
Line 8: Line 8:
  
 
==Solution==
 
==Solution==
Dividing the equation by <math>a\quad(a\neq0)</math> gives: <math>x^2+\frac{b}{a}x+\frac{c}{a}</math>.  
+
Dividing both sides of the equation by <math>a\quad(a\neq0)</math> gives <math>x^2+\frac{b}{a}x+\frac{c}{a}</math>.  
Let <math>r</math> and <math>s</math> be the roots of the equation
 
<cmath>r=\frac{1}{s}</cmath> <cmath>rs=1</cmath>
 
  
From [[Vieta's formula]], <math>rs=\frac{c}{a}\Rightarrow\frac{c}{a}=1\Rightarrow\boxed{\text{(C) }c=a}</math>
+
Letting <math>r</math> and <math>s</math> be the respective roots to this quadratic, <math>r=\frac{1}{s} \Rightarrow rs=1</math>.
 +
 
 +
From [[Vieta's]], <math>rs=\frac{c}{a}</math>, so <math>\frac{c}{a}=1\Rightarrow\boxed{\text{(C) }c=a}</math>
  
 
== See Also==
 
== See Also==
 
{{AHSME box|year=1956|num-b=6|num-a=8}}
 
{{AHSME box|year=1956|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 11:46, 15 March 2023

Problem

The roots of the equation $ax^2 + bx + c = 0$ will be reciprocal if:

$\textbf{(A)}\ a = b \qquad\textbf{(B)}\ a = bc \qquad\textbf{(C)}\ c = a \qquad\textbf{(D)}\ c = b \qquad\textbf{(E)}\ c = ab$


Solution

Dividing both sides of the equation by $a\quad(a\neq0)$ gives $x^2+\frac{b}{a}x+\frac{c}{a}$.

Letting $r$ and $s$ be the respective roots to this quadratic, $r=\frac{1}{s} \Rightarrow rs=1$.

From Vieta's, $rs=\frac{c}{a}$, so $\frac{c}{a}=1\Rightarrow\boxed{\text{(C) }c=a}$

See Also

1956 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png