Difference between revisions of "Radon's Inequality"
m |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath> | <cmath> \frac{ a_1^{p+1} } { b_1^p } + \frac{ a_2 ^{p+1} } { b_2^p } + \cdots + \frac{ a_n ^{p+1} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+1} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath> | ||
− | It is a direct consequence of [[Hölder's Inequality]], and a generalization of [[Titu's Lemma]] (for p= | + | It is a direct consequence of [[Hölder's Inequality]], and a generalization of [[Titu's Lemma]] (for p=1, it is just that). |
=== Proof === | === Proof === | ||
Line 14: | Line 14: | ||
=== Further Generalizations === | === Further Generalizations === | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<cmath> \frac{ a_1^{p+m} } { b_1^p } + \frac{ a_2 ^{p+m} } { b_2^p } + \cdots + \frac{ a_n ^{p+m} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+m} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath> | <cmath> \frac{ a_1^{p+m} } { b_1^p } + \frac{ a_2 ^{p+m} } { b_2^p } + \cdots + \frac{ a_n ^{p+m} } { b_n^p } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^{p+m} } { (b_1 + b_2 + \cdots+ b_n )^p} </cmath> |
Latest revision as of 08:00, 11 August 2024
Radon's Inequality states:
It is a direct consequence of Hölder's Inequality, and a generalization of Titu's Lemma (for p=1, it is just that).
Proof
Just apply Hölder for:
Further Generalizations