Difference between revisions of "2002 AMC 8 Problems/Problem 23"

(Video Solution)
(Problem)
 
(3 intermediate revisions by 3 users not shown)
Line 25: Line 25:
  
 
==Video Solution==
 
==Video Solution==
https://youtu.be/WF3mJoFCXCM Soo, DRMS, NM
 
  
https://www.youtube.com/watch?v=rJnc0Tes3LU
+
 
 +
https://www.youtube.com/watch?v=rJnc0Tes3LU ~David
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2002|num-b=22|num-a=24}}
 
{{AMC8 box|year=2002|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 07:38, 1 July 2024

Problem

A corner of a tiled floor is shown. If the entire floor is tiled in this way and each of the four corners looks like this one, then what fraction of the tiled floor is made of darker tiles?

[asy] /* AMC8 2002 #23 Problem */ fill((0,2)--(1,3)--(2,3)--(2,4)--(3,5)--(4,4)--(4,3)--(5,3)--(6,2)--(5,1)--(4,1)--(4,0)--(2,0)--(2,1)--(1,1)--cycle, mediumgrey); fill((7,1)--(6,2)--(7,3)--(8,3)--(8,4)--(9,5)--(10,4)--(7,0)--cycle, mediumgrey); fill((3,5)--(2,6)--(2,7)--(1,7)--(0,8)--(1,9)--(2,9)--(2,10)--(3,11)--(4,10)--(4,9)--(5,9)--(6,8)--(5,7)--(4,7)--(4,6)--cycle, mediumgrey); fill((6,8)--(7,9)--(8,9)--(8,10)--(9,11)--(10,10)--(10,9)--(11,9)--(11,7)--(10,7)--(10,6)--(9,5)--(8,6)--(8,7)--(7,7)--cycle, mediumgrey); draw((0,0)--(0,11)--(11,11)); for ( int x = 1; x < 11; ++x ) { draw((x,11)--(x,0), linetype("4 4")); } for ( int y = 1; y < 11; ++y ) { draw((0,y)--(11,y), linetype("4 4")); } clip((0,0)--(0,11)--(11,11)--(11,5)--(4,1)--cycle);[/asy]

$\textbf{(A)}\ \frac{1}3\qquad\textbf{(B)}\ \frac{4}9\qquad\textbf{(C)}\ \frac{1}2\qquad\textbf{(D)}\ \frac{5}9\qquad\textbf{(E)}\ \frac{5}8$

Solution

The same pattern is repeated for every $6 \times 6$ tile. Looking closer, there is also symmetry of the top $3 \times 3$ square, so the fraction of the entire floor in dark tiles is the same as the fraction in the square. Counting the tiles, there are $4$ dark tiles, and $9$ total tiles, giving a fraction of $\boxed{\text{(B)}\ \frac49}$.

Video Solution

https://www.youtube.com/watch?v=rJnc0Tes3LU ~David

See Also

2002 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png