Difference between revisions of "2015 AMC 8 Problems/Problem 14"

(Solution 5)
(Video Solution)
 
(3 intermediate revisions by one other user not shown)
Line 8: Line 8:
  
 
===Solution 1===
 
===Solution 1===
Let our <math>4</math> numbers be <math>n, n+2, n+4, n+6</math>, where <math>n</math> is odd. Then our sum is <math>4n+12</math>. The only answer choice that cannot be written as <math>4n+12</math>, where <math>n</math> is odd, is <math>\boxed{\textbf{(D)}\text{ 100}}</math>.
+
Let our <math>4</math> numbers be <math>n, n+2, n+4, n+6</math>, where <math>n</math> is odd. Then, our sum is <math>4n+12</math>. The only answer choice that cannot be written as <math>4n+12</math>, where <math>n</math> is odd, is <math>\boxed{\textbf{(D)}\text{ 100}}</math>.
  
 
===Solution 2===
 
===Solution 2===
If the four consecutive odd integers are <math>2n-3,~ 2n-1, ~2n+1</math> and <math>2n+3</math> then the sum is <math>8n</math>. All the integers are divisible by <math>8</math> except <math>\boxed{\textbf{(D)}~100}</math>.
+
If the four consecutive odd integers are <math>2n-3,~ 2n-1, ~2n+1</math> and <math>2n+3</math>; then, the sum is <math>8n</math>. All the integers are divisible by <math>8</math> except <math>\boxed{\textbf{(D)}~100}</math>.
  
 
===Solution 3===
 
===Solution 3===
Line 25: Line 25:
 
<cmath>72=15+17+19+21</cmath>
 
<cmath>72=15+17+19+21</cmath>
 
<cmath>200=47+49+51+53</cmath>
 
<cmath>200=47+49+51+53</cmath>
All of the answer choices can be a sum of consecutive odd numbers except <math>100</math>, so the answer is <math>\boxed{\textbf{(D)} 100}</math>
+
All of the answer choices can be a sum of consecutive odd numbers except <math>100</math>, so the answer is <math>\boxed{\textbf{(D)} 100}</math>.
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
https://youtu.be/Xc7EYnJL5_c
 +
 
 +
~Education, the Study of Everything
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 15:46, 14 May 2023

Problem

Which of the following integers cannot be written as the sum of four consecutive odd integers?

$\textbf{(A)}\text{ 16}\quad\textbf{(B)}\text{ 40}\quad\textbf{(C)}\text{ 72}\quad\textbf{(D)}\text{ 100}\quad\textbf{(E)}\text{ 200}$

Solutions

Solution 1

Let our $4$ numbers be $n, n+2, n+4, n+6$, where $n$ is odd. Then, our sum is $4n+12$. The only answer choice that cannot be written as $4n+12$, where $n$ is odd, is $\boxed{\textbf{(D)}\text{ 100}}$.

Solution 2

If the four consecutive odd integers are $2n-3,~ 2n-1, ~2n+1$ and $2n+3$; then, the sum is $8n$. All the integers are divisible by $8$ except $\boxed{\textbf{(D)}~100}$.

Solution 3

If the four consecutive odd integers are $a,~ a+2, ~a+4$ and $a+6$, the sum is $4a+12$, and $4a+12$ divided by $4$ gives $a+3$. This means that $a+3$ must be even. The only integer that does not give an even integer when divided by $4$ is $100$, so the answer is $\boxed{\textbf{(D)}~100}$.

Solution 4

From Solution 1, we have the sum of the $4$ numbers to be equal to $4n + 12$. Taking mod 8 gives us $4n + 4 \equiv b \pmod8$ for some residue $b$ and for some odd integer $n$. Since $n \equiv 1 \pmod{2}$, we can express it as the equation $n = 2a + 1$ for some integer $a$. Multiplying 4 to each side of the equation yields $4n = 8a + 4$, and taking mod 8 gets us $4n \equiv 4 \pmod{8}$, so $b = 0$. All the answer choices except choice D is a multiple of 8, and since 100 satisfies all the conditions the answer is $\boxed{\textbf{(D)}~100}$.

Solution 5

Since they want CONSECUTIVE odd numbers, it won't be hard to just list the sums out: \[16=1+3+5+7\] \[40=7+9+11+13\] \[72=15+17+19+21\] \[200=47+49+51+53\] All of the answer choices can be a sum of consecutive odd numbers except $100$, so the answer is $\boxed{\textbf{(D)} 100}$.

Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/Xc7EYnJL5_c

~Education, the Study of Everything

Video Solution

https://youtu.be/khCUYxEJFQg

~savannahsolver

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png