|
|
(7 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | == Problem ==
| + | #REDIRECT [[2022_AMC_10B_Problems/Problem_6]] |
− | How many of the first ten numbers of the sequence <math>121</math>, <math>11211</math>, <math>1112111</math>, ... are prime numbers?
| |
− | <math>\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4</math>
| |
− | | |
− | == Solution 1 ==
| |
− | Let <math>P(a,b)</math> denote the digit <math>a</math> written <math>b</math> times and let <math>\overline{a_1a_2\cdots a_n}</math> denote the concatenation of <math>a_1</math>, <math>a_2</math>, ..., <math>a_n</math>.
| |
− | | |
− | Observe that <cmath>\overline{P(1,n) 2 P(1,n)} = \overline{P(1,n+1)P(0,n)} + P(1,n+1) = P(1,n+1) \cdot 10^n + P(1,n+1) = (P(1,n+1))(10^n + 1).</cmath>
| |
− | | |
− | Both terms are integers larger than <math>1</math> since <math>n \geq 1</math>, so <math>\textbf{(A) } 0</math> of the numbers of the sequence are prime.
| |
− | | |
− | ~[[User:Bxiao31415|Bxiao31415]]
| |
− | | |
− | == See Also ==
| |
− | {{AMC12 box|year=2022|ab=B|num-b=2|num-a=4}}
| |
− | {{MAA Notice}}
| |