Difference between revisions of "2003 AMC 8 Problems/Problem 18"

(Solution)
m (Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 28: Line 28:
  
 
==Solution==
 
==Solution==
There are <math>3</math> people who are friends with only each other who won't be invited, plus <math>1</math> person who has no friends, and <math>2</math> people who are friends of friends of friends who won't be invited. So the answer is <math>\boxed{\textbf{(D)}\ 6}</math>.
+
There are <math>3</math> people who are friends with only each other who won't be invited, plus <math>1</math> person who has no friends, and <math>2</math> people who are friends of friends of friends who won’t be invited. So the answer is <math>\boxed{\textbf{(D)}\ 6}</math>.
  
 
==Video Solution==
 
==Video Solution==
 
https://www.youtube.com/watch?v=TBncumM5bFQ
 
https://www.youtube.com/watch?v=TBncumM5bFQ
 +
 +
~David
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2003|num-b=17|num-a=19}}
 
{{AMC8 box|year=2003|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 21:17, 5 January 2024

Problem

Each of the twenty dots on the graph below represents one of Sarah's classmates. Classmates who are friends are connected with a line segment. For her birthday party, Sarah is inviting only the following: all of her friends and all of those classmates who are friends with at least one of her friends. How many classmates will not be invited to Sarah's party? [asy]/* AMC8 2003 #18 Problem */ pair a=(102,256), b=(68,131), c=(162,101), d=(134,150); pair e=(269,105), f=(359,104), g=(303,12), h=(579,211); pair i=(534, 342), j=(442,432), k=(374,484), l=(278,501); pair m=(282,411), n=(147,451), o=(103,437), p=(31,373); pair q=(419,175), r=(462,209), s=(477,288), t=(443,358); pair oval=(282,303); draw(l--m--n--cycle); draw(p--oval); draw(o--oval); draw(b--d--oval); draw(c--d--e--oval); draw(e--f--g--h--i--j--oval); draw(k--oval); draw(q--oval); draw(s--oval); draw(r--s--t--oval); dot(a); dot(b); dot(c); dot(d); dot(e); dot(f); dot(g); dot(h); dot(i); dot(j); dot(k); dot(l); dot(m); dot(n); dot(o); dot(p); dot(q); dot(r); dot(s); dot(t); filldraw(yscale(.5)*Circle((282,606),80),white,black); label(scale(0.75)*"Sarah", oval);[/asy]

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 7$

Solution

There are $3$ people who are friends with only each other who won't be invited, plus $1$ person who has no friends, and $2$ people who are friends of friends of friends who won’t be invited. So the answer is $\boxed{\textbf{(D)}\ 6}$.

Video Solution

https://www.youtube.com/watch?v=TBncumM5bFQ

~David

See Also

2003 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png