Difference between revisions of "2001 AMC 12 Problems/Problem 22"

(Solution)
(See also)
 
(12 intermediate revisions by 7 users not shown)
Line 15: Line 15:
 
</math>
 
</math>
  
[[Category: Introductory Geometry Problems]]
+
== Solution 1 ==
 
 
== Solution ==
 
 
 
 
<asy>
 
<asy>
 
unitsize(0.5cm);
 
unitsize(0.5cm);
Line 40: Line 37:
 
draw(H--D, dashed);
 
draw(H--D, dashed);
 
</asy>
 
</asy>
 
 
=== Solution 1 ===
 
 
 
Note that the triangles <math>AFH</math> and <math>CEH</math> are similar, as they have the same angles. Hence <math>\frac {AH}{HC} = \frac{AF}{EC} = \frac 23</math>.
 
Note that the triangles <math>AFH</math> and <math>CEH</math> are similar, as they have the same angles. Hence <math>\frac {AH}{HC} = \frac{AF}{EC} = \frac 23</math>.
  
Line 57: Line 50:
 
Therefore <math>[EHJ]=[ACD]-[AHD]-[DEH]-[EJC]=35-14-\frac {21}2-\frac{15}2 = \boxed{3}</math>.
 
Therefore <math>[EHJ]=[ACD]-[AHD]-[DEH]-[EJC]=35-14-\frac {21}2-\frac{15}2 = \boxed{3}</math>.
  
=== Solution 2 ===
+
== Solution 2 ==
  
 
As in the previous solution, we note the similar triangles and prove that <math>H</math> is in <math>2/5</math> and <math>J</math> in <math>4/7</math> of <math>AC</math>.  
 
As in the previous solution, we note the similar triangles and prove that <math>H</math> is in <math>2/5</math> and <math>J</math> in <math>4/7</math> of <math>AC</math>.  
Line 65: Line 58:
 
As <math>E</math> is the midpoint of <math>CD</math>, the height from <math>E</math> onto <math>AC</math> is <math>1/2</math> of the height from <math>D</math> onto <math>AC</math>. Therefore we have <math>[EHJ] = \frac{6}{35} \cdot \frac 12 \cdot [ACD] = \frac 3{35} \cdot 35 = \boxed{3}</math>.
 
As <math>E</math> is the midpoint of <math>CD</math>, the height from <math>E</math> onto <math>AC</math> is <math>1/2</math> of the height from <math>D</math> onto <math>AC</math>. Therefore we have <math>[EHJ] = \frac{6}{35} \cdot \frac 12 \cdot [ACD] = \frac 3{35} \cdot 35 = \boxed{3}</math>.
  
=== Solution 3 ===
+
== Solution 3 ==
 
Because we see that there are only lines and there is a rectangle, we can coordbash (place this figure on coordinates). Because this is a general figure, we can assume the sides are <math>7</math> and <math>10</math> (or any other two positive real numbers that multiply to 70). We can find <math>H</math> and <math>J</math> by intersecting lines, and then we calculate the area of <math>EHJ</math> using shoelace formula. This yields <math>\boxed{3}</math>.
 
Because we see that there are only lines and there is a rectangle, we can coordbash (place this figure on coordinates). Because this is a general figure, we can assume the sides are <math>7</math> and <math>10</math> (or any other two positive real numbers that multiply to 70). We can find <math>H</math> and <math>J</math> by intersecting lines, and then we calculate the area of <math>EHJ</math> using shoelace formula. This yields <math>\boxed{3}</math>.
  
=== Solution 4 ===
+
== Solution 4 ==
Note that triangle <math>AFH</math> is similar to triangle <math>CEH</math> with ratio <math>\frac{2}{3}</math>. Similarly, triangle <math>AGJ</math> is similar to triangle <math>ECJ</math> with ratio <math>\frac{4}{3}</math>. Thus, if <math>AC = a</math> then we know that <math>AH = \frac{2}{5}a</math> and <math>JC = \frac{3}{7}a</math> meaning <math>HJ = \frac{6}{35}a</math> and thus the ratio of <math>HJ</math> to <math>JC</math> is <math>\frac{\frac{6}{35}}{\frac{3}{7}} = \frac{2}{5}</math> which equals the ratio of the areas of <math>HJE</math> to <math>JEC</math>. If <math>y = AD, x = DC</math>, then we know that <math>JEC = \text{altitude from J to EC} \cdot EC = \frac{3}{7}y \cdot \frac{1}{2}x \cdot \frac{1}{2}</math> and since <math>xy = 70</math> and we want to find <math>\frac{2}{5}</math> of this, we get our answer is <math>\frac{2}{5} \cdot \frac{3}{7} \cdot \frac{1}{2} \cdot 70 \cdot \frac{1}{2} = \boxed{3}</math>. -SuperJJ
+
Note that triangle <math>AFH</math> is similar to triangle <math>CEH</math> with ratio <math>\frac{2}{3}</math>. Similarly, triangle <math>AGJ</math> is similar to triangle <math>ECJ</math> with ratio <math>\frac{4}{3}</math>. Thus, if <math>AC = a</math> then we know that <math>AH = \frac{2}{5}a</math> and <math>JC = \frac{3}{7}a</math> meaning <math>HJ = \frac{6}{35}a</math> and thus the ratio of <math>HJ</math> to <math>JC</math> is <math>\frac{\frac{6}{35}}{\frac{3}{7}} = \frac{2}{5}</math> which equals the ratio of the areas of <math>HJE</math> to <math>JEC</math>. If <math>y = AD, x = DC</math>, then we know that <math>JEC = \text{(altitude from J to EC)} \cdot EC = \frac{3}{7}y \cdot \frac{1}{2}x \cdot \frac{1}{2}</math> and since <math>xy = 70</math> and we want to find <math>\frac{2}{5}</math> of this, we get our answer is <math>\frac{2}{5} \cdot \frac{3}{7} \cdot \frac{1}{2} \cdot 70 \cdot \frac{1}{2} = \boxed{3}</math>. -SuperJJ
 +
 
 +
== Solution 5 ==
 +
 
 +
<math>[CEF] = \frac{[ABCD]}{4} = \frac{35}{2}</math>
 +
 
 +
<math>\triangle CEH \sim \triangle AFH</math>, <math>\frac{HE}{HF} = \frac{CE}{AF} = \frac{3}{2}</math>, <math>\frac{HE}{EF} = \frac{3}{5}</math>
 +
 
 +
<math>[CEH] = \frac{HE}{EF} \cdot [CEF] = \frac{3}{5} \cdot \frac{35}{2} = \frac{21}{2}</math>
 +
 
 +
<math>\triangle CEH \sim \triangle AFH</math>, <math>\frac{AH}{HC} = \frac{AF}{CE} = \frac{2}{3}</math>, <math>\frac{AH}{AC} = \frac{2}{5}</math>, <math>\frac{CH}{AC} = \frac{3}{5}</math>
 +
 
 +
<math>\triangle CEJ \sim \triangle AGJ</math>, <math>\frac{AJ}{JC} = \frac{AG}{CE} = \frac{4}{3}</math>, <math>\frac{AJ}{AC} = \frac{4}{7}</math>
 +
 
 +
<math>\frac{HJ}{AC} = \frac{AJ}{AC} - \frac{AH}{AC} = \frac{4}{7} - \frac{2}{5} = \frac{6}{35}</math>
 +
 
 +
<math>\frac{HJ}{CH} = \frac{HJ}{AC} \cdot \frac{AC}{CH} = \frac{6}{35} \cdot \frac{5}{3} = \frac{2}{7}</math>
 +
 
 +
<math>[EHJ] = \frac{HJ}{CH} \cdot [CEH] = \frac{2}{7} \cdot \frac{21}{2} = \boxed{\textbf{(C) }3}</math>
 +
 
 +
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 +
 
 +
== Solution 6 (Mass Points) ==
 +
 
 +
We need one more pair of ratios to fully define our mass point system.  Let's use <math>\triangle AFH \sim \triangle CEH\implies EH:HF = 3:2</math> and now do mass points on <math>\triangle AEG</math>:
 +
 
 +
<asy>
 +
size(250);
 +
pair A = (0,0), B = (10,0), C = (10,7), D = (0,7);
 +
pair F = (10/3,0), G = (20/3,0), E = (5,7);
 +
pair H = intersectionpoint(A--C, E--F);
 +
pair J = intersectionpoint(A--C, E--G);
 +
filldraw(A--E--G--cycle, rgb(1,1,1)+opacity(0.3), red+2bp);
 +
draw(A--B--C--D--cycle);
 +
draw(A--C);
 +
draw(E--F);
 +
draw(E--G);
 +
draw(A--E, dashed);
 +
draw(E--B, dashed);
 +
dot("$A$", A, SW);
 +
dot("$B$", B, SE);
 +
dot("$C$", C, NE);
 +
dot("$D$", D, NW);
 +
dot("$E$", E, N);
 +
dot("$F$", F, S);
 +
dot("$G$", G, S);
 +
dot("$H$", H, ESE);
 +
dot("$J$", J, W);
 +
 
 +
// mass point labels
 +
pair mass = A + SW;
 +
label(scale(0.8)*"$3$", mass, UnFill);
 +
draw(circle(mass, .4), linewidth(1));
 +
pair mass = F + S;
 +
label(scale(0.8)*"$6$", mass, UnFill);
 +
draw(circle(mass, .4), linewidth(1));
 +
pair mass = G + SE;
 +
label(scale(0.8)*"$3$", mass, UnFill);
 +
draw(circle(mass, .4), linewidth(1));
 +
pair mass = J + .7*ESE;
 +
label(scale(0.8)*"$7$", mass, UnFill);
 +
draw(circle(mass, .4), linewidth(1));
 +
pair mass = E + N;
 +
label(scale(0.8)*"$4$", mass, UnFill);
 +
draw(circle(mass, .4), linewidth(1));
 +
pair mass = H + .7*WNW;
 +
label(scale(0.8)*"$10$", mass, UnFill);
 +
draw(circle(mass, .4), linewidth(1));
 +
</asy>
 +
 
 +
Now it's just a standard "Area Reduction by Ratios"&trade; problem going from:
 +
 
 +
<cmath>[ABCD]\xrightarrow[]{\frac{1}{2}}[AEB]\xrightarrow[]{\frac{2}{3}}[AEG]\xrightarrow[]{\frac{3}{7}}[AEJ]\xrightarrow[]{\frac{3}{10}}[HEJ]</cmath>
 +
 
 +
or,
 +
 
 +
<cmath>70 \cdot \frac{1}{2}\cdot \frac{2}{3}\cdot \frac{3}{7}\cdot \frac{3}{10} = \boxed{\textbf{(C) }3}</cmath>
 +
 
 +
~ proloto
  
== See Also ==
+
==See also==
  
 
{{AMC12 box|year=2001|num-b=21|num-a=23}}
 
{{AMC12 box|year=2001|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 01:27, 29 August 2023

Problem

In rectangle $ABCD$, points $F$ and $G$ lie on $AB$ so that $AF=FG=GB$ and $E$ is the midpoint of $\overline{DC}$. Also, $\overline{AC}$ intersects $\overline{EF}$ at $H$ and $\overline{EG}$ at $J$. The area of the rectangle $ABCD$ is $70$. Find the area of triangle $EHJ$.

$\text{(A) }\frac {5}{2} \qquad \text{(B) }\frac {35}{12} \qquad \text{(C) }3 \qquad \text{(D) }\frac {7}{2} \qquad \text{(E) }\frac {35}{8}$

Solution 1

[asy] unitsize(0.5cm); defaultpen(0.8); pair A=(0,0), B=(10,0), C=(10,7), D=(0,7), E=(C+D)/2, F=(2*A+B)/3, G=(A+2*B)/3; pair H = intersectionpoint(A--C,E--F); pair J = intersectionpoint(A--C,E--G); draw(A--B--C--D--cycle); draw(G--E--F); draw(A--C); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,NW); label("$E$",E,N); label("$F$",F,S); label("$G$",G,S); label("$H$",H,SE); label("$J$",J,ESE); filldraw(E--H--J--cycle,lightgray,black); draw(H--D, dashed); [/asy] Note that the triangles $AFH$ and $CEH$ are similar, as they have the same angles. Hence $\frac {AH}{HC} = \frac{AF}{EC} = \frac 23$.

Also, triangles $AGJ$ and $CEJ$ are similar, hence $\frac {AJ}{JC} = \frac {AG}{EC} = \frac 43$.

We can now compute $[EHJ]$ as $[ACD]-[AHD]-[DEH]-[EJC]$. We have:

  • $[ACD]=\frac{[ABCD]}2 = 35$.
  • $[AHD]$ is $2/5$ of $[ACD]$, as these two triangles have the same base $AD$, and $AH$ is $2/5$ of $AC$, therefore also the height from $H$ onto $AD$ is $2/5$ of the height from $C$. Hence $[AHD]=14$.
  • $[HED]$ is $3/10$ of $[ACD]$, as the base $ED$ is $1/2$ of the base $CD$, and the height from $H$ is $3/5$ of the height from $A$. Hence $[HED]=\frac {21}2$.
  • $[JEC]$ is $3/14$ of $[ACD]$ for similar reasons, hence $[JEC]=\frac{15}2$.

Therefore $[EHJ]=[ACD]-[AHD]-[DEH]-[EJC]=35-14-\frac {21}2-\frac{15}2 = \boxed{3}$.

Solution 2

As in the previous solution, we note the similar triangles and prove that $H$ is in $2/5$ and $J$ in $4/7$ of $AC$.

We can then compute that $HJ = AC \cdot \left( \frac 47 - \frac 25 \right) = AC \cdot \frac{6}{35}$.

As $E$ is the midpoint of $CD$, the height from $E$ onto $AC$ is $1/2$ of the height from $D$ onto $AC$. Therefore we have $[EHJ] = \frac{6}{35} \cdot \frac 12 \cdot [ACD] = \frac 3{35} \cdot 35 = \boxed{3}$.

Solution 3

Because we see that there are only lines and there is a rectangle, we can coordbash (place this figure on coordinates). Because this is a general figure, we can assume the sides are $7$ and $10$ (or any other two positive real numbers that multiply to 70). We can find $H$ and $J$ by intersecting lines, and then we calculate the area of $EHJ$ using shoelace formula. This yields $\boxed{3}$.

Solution 4

Note that triangle $AFH$ is similar to triangle $CEH$ with ratio $\frac{2}{3}$. Similarly, triangle $AGJ$ is similar to triangle $ECJ$ with ratio $\frac{4}{3}$. Thus, if $AC = a$ then we know that $AH = \frac{2}{5}a$ and $JC = \frac{3}{7}a$ meaning $HJ = \frac{6}{35}a$ and thus the ratio of $HJ$ to $JC$ is $\frac{\frac{6}{35}}{\frac{3}{7}} = \frac{2}{5}$ which equals the ratio of the areas of $HJE$ to $JEC$. If $y = AD, x = DC$, then we know that $JEC = \text{(altitude from J to EC)} \cdot EC = \frac{3}{7}y \cdot \frac{1}{2}x \cdot \frac{1}{2}$ and since $xy = 70$ and we want to find $\frac{2}{5}$ of this, we get our answer is $\frac{2}{5} \cdot \frac{3}{7} \cdot \frac{1}{2} \cdot 70 \cdot \frac{1}{2} = \boxed{3}$. -SuperJJ

Solution 5

$[CEF] = \frac{[ABCD]}{4} = \frac{35}{2}$

$\triangle CEH \sim \triangle AFH$, $\frac{HE}{HF} = \frac{CE}{AF} = \frac{3}{2}$, $\frac{HE}{EF} = \frac{3}{5}$

$[CEH] = \frac{HE}{EF} \cdot [CEF] = \frac{3}{5} \cdot \frac{35}{2} = \frac{21}{2}$

$\triangle CEH \sim \triangle AFH$, $\frac{AH}{HC} = \frac{AF}{CE} = \frac{2}{3}$, $\frac{AH}{AC} = \frac{2}{5}$, $\frac{CH}{AC} = \frac{3}{5}$

$\triangle CEJ \sim \triangle AGJ$, $\frac{AJ}{JC} = \frac{AG}{CE} = \frac{4}{3}$, $\frac{AJ}{AC} = \frac{4}{7}$

$\frac{HJ}{AC} = \frac{AJ}{AC} - \frac{AH}{AC} = \frac{4}{7} - \frac{2}{5} = \frac{6}{35}$

$\frac{HJ}{CH} = \frac{HJ}{AC} \cdot \frac{AC}{CH} = \frac{6}{35} \cdot \frac{5}{3} = \frac{2}{7}$

$[EHJ] = \frac{HJ}{CH} \cdot [CEH] = \frac{2}{7} \cdot \frac{21}{2} = \boxed{\textbf{(C) }3}$

~isabelchen

Solution 6 (Mass Points)

We need one more pair of ratios to fully define our mass point system. Let's use $\triangle AFH \sim \triangle CEH\implies EH:HF = 3:2$ and now do mass points on $\triangle AEG$:

[asy] size(250); pair A = (0,0), B = (10,0), C = (10,7), D = (0,7); pair F = (10/3,0), G = (20/3,0), E = (5,7); pair H = intersectionpoint(A--C, E--F); pair J = intersectionpoint(A--C, E--G); filldraw(A--E--G--cycle, rgb(1,1,1)+opacity(0.3), red+2bp); draw(A--B--C--D--cycle); draw(A--C); draw(E--F); draw(E--G); draw(A--E, dashed); draw(E--B, dashed); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, NE); dot("$D$", D, NW); dot("$E$", E, N); dot("$F$", F, S); dot("$G$", G, S); dot("$H$", H, ESE); dot("$J$", J, W);  // mass point labels pair mass = A + SW; label(scale(0.8)*"$3$", mass, UnFill); draw(circle(mass, .4), linewidth(1)); pair mass = F + S; label(scale(0.8)*"$6$", mass, UnFill); draw(circle(mass, .4), linewidth(1)); pair mass = G + SE; label(scale(0.8)*"$3$", mass, UnFill); draw(circle(mass, .4), linewidth(1)); pair mass = J + .7*ESE; label(scale(0.8)*"$7$", mass, UnFill); draw(circle(mass, .4), linewidth(1)); pair mass = E + N; label(scale(0.8)*"$4$", mass, UnFill); draw(circle(mass, .4), linewidth(1)); pair mass = H + .7*WNW; label(scale(0.8)*"$10$", mass, UnFill); draw(circle(mass, .4), linewidth(1)); [/asy]

Now it's just a standard "Area Reduction by Ratios"™ problem going from:

\[[ABCD]\xrightarrow[]{\frac{1}{2}}[AEB]\xrightarrow[]{\frac{2}{3}}[AEG]\xrightarrow[]{\frac{3}{7}}[AEJ]\xrightarrow[]{\frac{3}{10}}[HEJ]\]

or,

\[70 \cdot \frac{1}{2}\cdot \frac{2}{3}\cdot \frac{3}{7}\cdot \frac{3}{10} = \boxed{\textbf{(C) }3}\]

~ proloto

See also

2001 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png