Difference between revisions of "2019 AIME I Problems/Problem 2"
Mathfun1000 (talk | contribs) m |
m (→Solution 7 (Official MAA)) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
==Solution 1== | ==Solution 1== | ||
− | + | <math>B-J \ne 0</math> because <math>B \ne J</math>, so the probability that <math>B-J < 0</math> is <math>\frac{1}{2}</math> by symmetry. | |
− | <math>B-J | + | |
− | The probability that <math>B-J= 1</math> is <math>\frac{19}{20 \times 19} = \frac{1}{20}</math> because there are 19 pairs: <math>(B,J) = (2,1), | + | The probability that <math>B-J = 1</math> is <math>\frac{19}{20 \times 19} = \frac{1}{20}</math> because there are 19 pairs: <math>(B,J) = (2,1), \ldots, (20,19)</math>. |
The probability that <math>B-J \ge 2</math> is <math>1-\frac{1}{2}-\frac{1}{20} = \frac{9}{20} \implies \boxed{029}</math> | The probability that <math>B-J \ge 2</math> is <math>1-\frac{1}{2}-\frac{1}{20} = \frac{9}{20} \implies \boxed{029}</math> | ||
Line 29: | Line 29: | ||
-josephwidjaja | -josephwidjaja | ||
==Solution 7 (Official MAA)== | ==Solution 7 (Official MAA)== | ||
− | There are <math>\tbinom{20}{2}=190</math> equally likely pairs <math>\{J,B\}</math>. In <math>19</math> of these pairs <math>(\{1,2\},\{2,3\},\{3,4\}\dots,\{19,20\})</math>, the numbers differ by less than 2, so the probability that the numbers differ by at least 2 is <math>1-\tfrac{19}{190}=\tfrac9{10}</math>. Then <math>B-J\ge 2</math> holds in exactly half of these cases, so it has probability <math>\tfrac12\cdot\tfrac9{10}=\tfrac{9}{20}</math>. The requested sum is <math>9+20= | + | There are <math>\tbinom{20}{2}=190</math> equally likely pairs <math>\{J,B\}</math>. In <math>19</math> of these pairs <math>(\{1,2\},\{2,3\},\{3,4\}\dots,\{19,20\})</math>, the numbers differ by less than 2, so the probability that the numbers differ by at least 2 is <math>1-\tfrac{19}{190}=\tfrac9{10}</math>. Then <math>B-J\ge 2</math> holds in exactly half of these cases, so it has probability <math>\tfrac12\cdot\tfrac9{10}=\tfrac{9}{20}</math>. The requested sum is <math>9+20=\boxed{029}</math>. |
==Video Solution #1(Easy Counting)== | ==Video Solution #1(Easy Counting)== | ||
Line 51: | Line 51: | ||
{{AIME box|year=2019|n=I|num-b=1|num-a=3}} | {{AIME box|year=2019|n=I|num-b=1|num-a=3}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
+ | |||
+ | [[Category:Introductory Combinatorics Problems]] |
Latest revision as of 18:47, 29 January 2025
Contents
Problem
Jenn randomly chooses a number from
. Bela then randomly chooses a number
from
distinct from
. The value of
is at least
with a probability that can be expressed in the form
where
and
are relatively prime positive integers. Find
.
Solution 1
because
, so the probability that
is
by symmetry.
The probability that is
because there are 19 pairs:
.
The probability that is
Solution 2
By symmetry, the desired probability is equal to the probability that is at most
, which is
where
is the probability that
and
differ by
(no zero, because the two numbers are distinct). There are
total possible combinations of
and
, and
ones that form
, so
. Therefore the answer is
.
Solution 3
This problem is essentially asking how many ways there are to choose distinct elements from a
element set such that no
elements are adjacent. Using the well-known formula
, there are
ways. Dividing
by
, our desired probability is
. Thus, our answer is
.
-Fidgetboss_4000
Solution 4
Create a grid using graph paper, with columns for the values of
from
to
and
rows for the values of
from
to
. Since
cannot equal
, we cross out the diagonal line from the first column of the first row to the twentieth column of the last row. Now, since
must be at least
, we can mark the line where
. Now we sum the number of squares that are on this line and below it. We get
. Then we find the number of total squares, which is
. Finally, we take the ratio
, which simplifies to
. Our answer is
.
Solution 5
We can see that if chooses
,
can choose from
through
such that
. If
chooses
,
has choices
~
. By continuing this pattern,
will choose
and
will have
option. Summing up the total, we get
as the total number of solutions. The total amount of choices is
(B and J must choose different numbers), so the probability is
. Therefore, the answer is
-eric2020
Solution 6
Similar to solution 4, we can go through the possible values of to find all the values of
that makes
. If
chooses
, then
can choose anything from
to
. If
chooses
, then
can choose anything from
to
. By continuing this pattern, we can see that there is
possible solutions. The amount of solutions is, therefore,
. Now, because
and
must be different, we have
possible choices, so the probability is
. Therefore, the final answer is
-josephwidjaja
Solution 7 (Official MAA)
There are equally likely pairs
. In
of these pairs
, the numbers differ by less than 2, so the probability that the numbers differ by at least 2 is
. Then
holds in exactly half of these cases, so it has probability
. The requested sum is
.
Video Solution #1(Easy Counting)
https://youtu.be/JQdad7APQG8?t=245
Video Solution
https://www.youtube.com/watch?v=lh570eu8E0E
Video Solution 2
https://youtu.be/TSKcjht8Rfk?t=488
~IceMatrix
Video Solution 3
~Shreyas S
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.