Difference between revisions of "2013 AMC 12A Problems/Problem 9"

(See also)
(Solution (Cheese))
 
(5 intermediate revisions by 2 users not shown)
Line 36: Line 36:
 
Since opposite sides of parallelograms are equal, the perimeter is <math>2 * (AD + DE) =  
 
Since opposite sides of parallelograms are equal, the perimeter is <math>2 * (AD + DE) =  
 
  \boxed{\textbf{(C) }{56}}</math>.
 
  \boxed{\textbf{(C) }{56}}</math>.
 +
 +
==Solution (Cheese)==
 +
We can set point <math>F</math> to be on point <math>C</math>, and point <math>D</math> to be on point <math>A</math>.
 +
 +
This makes a degenerate parallelogram with sides of length <math>28</math> and <math>0</math>, so it has a perimeter of <math>28 + 28 =
 +
\boxed{\textbf{(C) }{56}}</math>.
  
 
==Video Solution==
 
==Video Solution==
Line 46: Line 52:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
{{MAA Notice}}
 
  
== See also ==
+
{{AMC10 box|year=2013|ab=A|num-b=11|num-a=13}}
{{AMC10 box|year=2013|ab=A|num-b=8|num-a=10}}
 
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 15:25, 12 August 2023

Problem

In $\triangle ABC$, $AB=AC=28$ and $BC=20$. Points $D,E,$ and $F$ are on sides $\overline{AB}$, $\overline{BC}$, and $\overline{AC}$, respectively, such that $\overline{DE}$ and $\overline{EF}$ are parallel to $\overline{AC}$ and $\overline{AB}$, respectively. What is the perimeter of parallelogram $ADEF$?

[asy] size(180); pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); real r=5/7; pair A=(10,sqrt(28^2-100)),B=origin,C=(20,0),D=(A.x*r,A.y*r); pair bottom=(C.x+(D.x-A.x),C.y+(D.y-A.y)); pair E=extension(D,bottom,B,C); pair top=(E.x+D.x,E.y+D.y); pair F=extension(E,top,A,C); draw(A--B--C--cycle^^D--E--F); dot(A^^B^^C^^D^^E^^F); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,W); label("$E$",E,S); label("$F$",F,dir(0)); [/asy]

$\textbf{(A) }48\qquad \textbf{(B) }52\qquad \textbf{(C) }56\qquad \textbf{(D) }60\qquad \textbf{(E) }72\qquad$

Solution

Note that because $\overline{DE}$ and $\overline{EF}$ are parallel to the sides of $\triangle ABC$, the internal triangles $\triangle BDE$ and $\triangle EFC$ are similar to $\triangle ABC$, and are therefore also isosceles triangles.

It follows that $BD = DE$. Thus, $AD + DE = AD + DB = AB = 28$.

Since opposite sides of parallelograms are equal, the perimeter is $2 * (AD + DE) =   \boxed{\textbf{(C) }{56}}$.

Solution (Cheese)

We can set point $F$ to be on point $C$, and point $D$ to be on point $A$.

This makes a degenerate parallelogram with sides of length $28$ and $0$, so it has a perimeter of $28 + 28 =  \boxed{\textbf{(C) }{56}}$.

Video Solution

https://youtu.be/CCjcMVtkVaQ

~sugar_rush

See also

2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png