Difference between revisions of "2006 AIME A Problems/Problem 1"

(See also)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2006 AIME I Problems/Problem 1]]
 
 
In quadrilateral <math> ABCD , \angle B </math> is a right angle, diagonal <math> \overline{AC} </math> is perpendicular to <math> \overline{CD},  AB=18, BC=21, </math> and <math> CD=14. </math> Find the perimeter of <math> ABCD. </math>
 
 
 
== Solution ==
 
 
 
From the problem statement, we construct the following diagram: <div style="text-align:center">[[Image:Aime06i.1.PNG]]</div>
 
 
 
Using the [[Pythagorean Theorem]]:
 
 
 
<div style="text-align:center"><math> (AD)^2 = (AC)^2 + (CD)^2 </math></div>
 
 
 
<div style="text-align:center"><math> (AC)^2 = (AB)^2 + (BC)^2 </math></div>
 
 
 
Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>:
 
 
 
<div style="text-align:center"><math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math></div>
 
 
 
Plugging in the given information:
 
 
 
<div style="text-align:center"><math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math></div>
 
 
 
<div style="text-align:center"><math> (AD)^2 = 961 </math></div>
 
 
 
<div style="text-align:center"><math> (AD)= 31 </math></div>
 
 
 
So the perimeter is <math> 18+21+14+31=84 </math>, and the answer is <math>084</math>.
 
 
 
== See also ==
 
*{{AIME box|year=2006|n=I|before=First Problem|num-a=2}}
 
 
 
[[Category:Intermediate Geometry Problems]]
 

Latest revision as of 20:54, 5 June 2009