Difference between revisions of "2016 AMC 8 Problems/Problem 15"

(Solution 4 (Brute Force))
 
(26 intermediate revisions by 14 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A)}\mbox{ }8\qquad \textbf{(B)}\mbox{ }16\qquad \textbf{(C)}\mbox{ }32\qquad \textbf{(D)}\mbox{ }64\qquad \textbf{(E)}\mbox{ }128</math>
 
<math>\textbf{(A)}\mbox{ }8\qquad \textbf{(B)}\mbox{ }16\qquad \textbf{(C)}\mbox{ }32\qquad \textbf{(D)}\mbox{ }64\qquad \textbf{(E)}\mbox{ }128</math>
  
==Solution==
+
==Solution 1==
  
 
First, we use difference of squares on <math>13^4 - 11^4 = (13^2)^2 - (11^2)^2 </math> to get <math> 13^4 - 11^4 = (13^2 + 11^2)(13^2 - 11^2) </math>. Using difference of squares again and simplifying, we get <math>(169 + 121)(13+11)(13-11) = 290 \cdot 24 \cdot 2 = (2\cdot 8 \cdot 2) \cdot (3 \cdot 145)</math>. Realizing that we don't need the right-hand side because it doesn't contain any factor of 2, we see that the greatest power of <math>2</math> that is a divisor <math>13^4 - 11^4</math> is <math>\boxed{\textbf{(C)}\ 32}</math>.
 
First, we use difference of squares on <math>13^4 - 11^4 = (13^2)^2 - (11^2)^2 </math> to get <math> 13^4 - 11^4 = (13^2 + 11^2)(13^2 - 11^2) </math>. Using difference of squares again and simplifying, we get <math>(169 + 121)(13+11)(13-11) = 290 \cdot 24 \cdot 2 = (2\cdot 8 \cdot 2) \cdot (3 \cdot 145)</math>. Realizing that we don't need the right-hand side because it doesn't contain any factor of 2, we see that the greatest power of <math>2</math> that is a divisor <math>13^4 - 11^4</math> is <math>\boxed{\textbf{(C)}\ 32}</math>.
  
== Video Solution ==
+
~CHECKMATE2021
 +
 
 +
== Video Solution by OmegaLearn==
 
https://youtu.be/HISL2-N5NVg?t=3705
 
https://youtu.be/HISL2-N5NVg?t=3705
  
 
~ pi_is_3.14
 
~ pi_is_3.14
  
 +
== Video Solution==
 +
https://youtu.be/mZCOgH2kVuE
 +
 +
~savannahsolver
 +
 +
==Video Solution (CREATIVE THINKING!!!)==
 +
https://youtu.be/fWEwuLKZ7jY
 +
 +
~Education, the Study of Everything
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2016|num-b=14|num-a=16}}
 
{{AMC8 box|year=2016|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 21:58, 17 May 2024

Problem

What is the largest power of $2$ that is a divisor of $13^4 - 11^4$?

$\textbf{(A)}\mbox{ }8\qquad \textbf{(B)}\mbox{ }16\qquad \textbf{(C)}\mbox{ }32\qquad \textbf{(D)}\mbox{ }64\qquad \textbf{(E)}\mbox{ }128$

Solution 1

First, we use difference of squares on $13^4 - 11^4 = (13^2)^2 - (11^2)^2$ to get $13^4 - 11^4 = (13^2 + 11^2)(13^2 - 11^2)$. Using difference of squares again and simplifying, we get $(169 + 121)(13+11)(13-11) = 290 \cdot 24 \cdot 2 = (2\cdot 8 \cdot 2) \cdot (3 \cdot 145)$. Realizing that we don't need the right-hand side because it doesn't contain any factor of 2, we see that the greatest power of $2$ that is a divisor $13^4 - 11^4$ is $\boxed{\textbf{(C)}\ 32}$.

~CHECKMATE2021

Video Solution by OmegaLearn

https://youtu.be/HISL2-N5NVg?t=3705

~ pi_is_3.14

Video Solution

https://youtu.be/mZCOgH2kVuE

~savannahsolver

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/fWEwuLKZ7jY

~Education, the Study of Everything

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png