|
|
(3 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2021_Fall_AMC_12B_Problems/Problem_2]] |
− | | |
− | What is the area of the shaded figure shown below?
| |
− | <asy>
| |
− | size(200);
| |
− | defaultpen(linewidth(0.4)+fontsize(12));
| |
− | pen s = linewidth(0.8)+fontsize(8);
| |
− | | |
− | pair O,X,Y;
| |
− | O = origin;
| |
− | X = (6,0);
| |
− | Y = (0,5);
| |
− | fill((1,0)--(3,5)--(5,0)--(3,2)--cycle, palegray+opacity(0.2));
| |
− | for (int i=1; i<7; ++i)
| |
− | {
| |
− | draw((i,0)--(i,5), gray+dashed);
| |
− | label("${"+string(i)+"}$", (i,0), 2*S);
| |
− | if (i<6)
| |
− | {
| |
− | draw((0,i)--(6,i), gray+dashed);
| |
− | label("${"+string(i)+"}$", (0,i), 2*W);
| |
− | }
| |
− | }
| |
− | label("$0$", O, 2*SW);
| |
− | draw(O--X+(0.15,0), EndArrow);
| |
− | draw(O--Y+(0,0.15), EndArrow);
| |
− | draw((1,0)--(3,5)--(5,0)--(3,2)--(1,0), black+1.5);
| |
− | </asy>
| |
− | | |
− | <math>(\textbf{A})\: 4\qquad(\textbf{B}) \: 6\qquad(\textbf{C}) \: 8\qquad(\textbf{D}) \: 10\qquad(\textbf{E}) \: 12</math>
| |
− | | |
− | ==Solution #1==
| |
− | | |
− | We have <math>2</math> isosceles triangles. Thus, the area of the shaded region is <math>\frac{1}{2} \cdot 5 \cdot 4 - \left(\frac{1}{2} \cdot 4 \cdot 2\right) = 10 - 4 = 6.</math> Thus our answer is <math>\boxed{(\textbf{B}.)}.</math>
| |
− | | |
− | ~NH14
| |
− | | |
− | | |
− | ==Solution #2==
| |
− | | |
− | As we can see, the shape is symmetrical, so it will be equally valid to simply calculate one of the half's area and multiply by 2. One half's area is <math>\frac{bh}2</math>, so two halves would be <math>bh=3\cdot2=6</math>. Thus our answer is <math>\boxed{(\textbf{B}.)}.</math>
| |
− | | |
− | ~Hefei417, or 陆畅 Sunny from China
| |
− | | |
− | | |
− | ==Solution #3 (Overkill)==
| |
− | We start by finding the points. The outlined shape is made up of <math>(1,0),(3,5),(5,0),(3,2)</math>. By the
| |
− | Shoelace Theorem, we find the area to be <math>6</math>, or <math>\boxed{B}</math>.
| |
− | | |
− | | |
− | https://artofproblemsolving.com/wiki/index.php/Shoelace_Theorem
| |
− | | |
− | ~Taco12
| |
− | ~I-AM-DA-KING for the link
| |
− | | |
− | ==Solution #4 (Pick's Theorem)==
| |
− | | |
− | We can use Pick's Theorem. We have <math>4</math> interior points and <math>6</math> boundary points. By Pick's Theorem, we get <math>4+\frac{6}{2}-1 = 4+3-1 = 6.</math> Checking our answer choices, we find our answer to be <math>\boxed{B}</math>.
| |
− | | |
− | ~danprathab
| |
− | | |
− | == Solution 5 ==
| |
− | The area is
| |
− | <cmath>
| |
− | \begin{align*}
| |
− | \frac{1}{2} \left( 5 - 1 \right) 5 - \frac{1}{2} \left( 5 - 1 \right) 2
| |
− | & = 6 .
| |
− | \end{align*}
| |
− | </cmath>
| |
− | | |
− | Therefore, the answer is <math>\boxed{\textbf{(B) }6}</math>.
| |
− | | |
− | ~Steven Chen (www.professorchenedu.com)
| |
− | | |
− | ==Video Solution by Interstigation==
| |
− | https://youtu.be/p9_RH4s-kBA?t=110
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2021 Fall|ab=B|num-a=3|num-b=1}}
| |
− | {{MAA Notice}}
| |