Difference between revisions of "2021 Fall AMC 12A Problems/Problem 13"

(Rearranged the solutions and prioritize ANGLE BISECTOR THEOREM. Let me know if you are unhappy with this edit.)
(Solution 9)
 
(49 intermediate revisions by 10 users not shown)
Line 26: Line 26:
 
label("$x$",(xMax,0),(2,0));
 
label("$x$",(xMax,0),(2,0));
 
label("$y$",(0,yMax),(0,2));
 
label("$y$",(0,yMax),(0,2));
label("$y=x$",4.5*dir((1,1)));
+
label("$y=x$",4*dir((1,1)));
label("$y=3x$",3.75*dir((1,3)));
+
label("$y=3x$",4*dir((1,3)));
 
label("$y=kx$",4*dir((1,k)));
 
label("$y=kx$",4*dir((1,k)));
  
draw(O--4.25*dir((1,1))^^O--3.5*dir((1,3))^^O--3.75*dir((1,k)));
+
draw(O--3.75*dir((1,1))^^O--3.75*dir((1,3))^^O--3.75*dir((1,k)));
 
</asy>
 
</asy>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
Line 57: Line 57:
 
draw(anglemark(dir((1,k)),O,dir((1,3)),20), red);
 
draw(anglemark(dir((1,k)),O,dir((1,3)),20), red);
  
dot("$O$",O,1.5*SW,linewidth(5));
+
dot("$O$",O,1.5*SW,linewidth(4.5));
dot("$A$",A,1.5*N,linewidth(5));
+
dot("$A$",A,1.5*N,linewidth(4.5));
dot("$B$",B,1.5*N,linewidth(5));
+
dot("$B$",B,1.5*N,linewidth(4.5));
dot("$C$",C,1.5*N,linewidth(5));
+
dot("$C$",C,1.5*N,linewidth(4.5));
  
 
add(pathticks(anglemark(dir((1,1)),O,dir((1,k)),20), n = 1, r = 0.05, s = 5, red));
 
add(pathticks(anglemark(dir((1,1)),O,dir((1,k)),20), n = 1, r = 0.05, s = 5, red));
Line 90: Line 90:
 
<u><b>Remark</b></u>
 
<u><b>Remark</b></u>
  
The value of <math>k</math> is known as the <b>Golden Ratio</b>: <math>\phi=\frac{1+\sqrt{5}}{2}\approx1.618.</math>
+
The value of <math>k</math> is known as the <b>Golden Ratio</b>: <math>\phi=\frac{1+\sqrt{5}}{2}\approx 1.61803398875.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM
  
==Solution 2 (Angle Bisector Theorem) ==
+
==Solution 2 (Analytic and Plane Geometry) ==
 
<asy>
 
<asy>
 
size(180);  
 
size(180);  
Line 132: Line 132:
 
Since <math>AB=AC+BC=2</math>, it is easy derive <math>AC+\sqrt{5}AC=2 \implies AC=\frac{2}{1+\sqrt{5}}=\frac{-1+\sqrt{5}}{2}</math>.
 
Since <math>AB=AC+BC=2</math>, it is easy derive <math>AC+\sqrt{5}AC=2 \implies AC=\frac{2}{1+\sqrt{5}}=\frac{-1+\sqrt{5}}{2}</math>.
  
As the vertical distance between the <math>x</math>-axis and <math>C</math> is <math>\frac{-1+\sqrt{5}}{2}+1=\frac{1+\sqrt{5}}{2}</math>. Because the <math>x</math>-coordinate of point <math>C</math> is <math>1</math>, the slope we need to find is just the <math>y</math>-coordinate <math>\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.</math>
+
The vertical distance between the <math>x</math>-axis and <math>C</math> is <math>\frac{-1+\sqrt{5}}{2}+1=\frac{1+\sqrt{5}}{2}</math>. Because the <math>x</math>-coordinate of point <math>C</math> is <math>1</math>, the slope we need to find is just the <math>y</math>-coordinate <math>\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.</math>
  
 
~Wilhelm Z
 
~Wilhelm Z
  
==Solution 3 (Distance Between a Point and a Line)==
+
==Solution 3 (Analytic and Plane Geometry)==
 +
Let's begin by drawing a triangle that starts at the origin. Assume that the base of the triangle goes to the point <math>x = 1</math>. The line <math>x = y</math> is the hypotenuse of a right triangle with side length <math>1</math>. The hypotenuse' length is <math>\sqrt 2</math>. Then, let's draw the line <math>x = 3y</math>. We extend it to when <math>x = 1</math>. The length of the hypotenuse of the larger triangle is <math>\sqrt {10}</math> with legs <math>1, 3</math>. We then draw the angle bisector. We should label the triangle, so here we go. <math>AC</math> is <math>1</math>. <math>BC</math> is <math>3</math>. <math>AB</math> is <math>\sqrt {10}</math>. When the line with angle <math>45 ^\circ</math> intersects the line <math>x = 1</math>, call the point <math>D</math>. When the angle bisector intersects the line <math>x = 1</math>, call the point <math>E</math>. By Angle Bisector Theorem, <math>\frac {DE}{DB} = \frac {\sqrt {2}}{\sqrt{10}}</math>. Since <math>BC</math> is <math>3</math> and <math>DC</math> is <math>1</math>, we have that <math>BD</math> is <math>2</math>. Solving for <math>DE</math>, we get that <math>DE</math> is <math>\frac {\sqrt 5 - 1}{2}</math>.
 +
 
 +
Since <math>DE</math> is <math>\frac {\sqrt 5 - 1}{2}</math>, we have that <math>CE</math> is just one more than that. Therefore, <math>CE</math> is <math>\frac {1+\sqrt 5}{2}</math>. Since <math>AC</math> is <math>1</math>, we get that <math>k</math> is <math>\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}</math>.
 +
 
 +
<u><b>Remark</b></u>
 +
 
 +
The answer turns out to be the golden ratio or phi (<math>\phi</math>). Phi has many properties and is related to the [[Fibonacci sequence]]. See [[Phi]].
 +
 
 +
~Arcticturn <math>\blacksquare</math>
 +
 
 +
==Solution 4 (Distance Between a Point and a Line)==
 
Note that the distance between the point <math>(m,n)</math> to line <math>Ax + By + C = 0,</math> is <math>\frac{|Am + Bn +C|}{\sqrt{A^2 +B^2}}.</math> Because line <math>y=kx</math> is a perpendicular bisector, a point on the line <math>y=kx</math> must be equidistant from the two lines(<math>y=x</math> and <math>y=3x</math>), call this point <math>P(z,w).</math> Because, the line <math>y=kx</math> passes through the origin, our requested value of <math>k,</math> which is the slope of the angle bisector line, can be found when evaluating the value of <math>\frac{w}{z}.</math> By the Distance from Point to Line formula we get the equation, <cmath>\frac{|3z-w|}{\sqrt{10}} = \frac{|z-w|}{\sqrt{2}}.</cmath> Note that <math>|3z-w|\ge 0,</math> because <math>y=3x</math> is higher than <math>P</math> and <math>|z-w|\le 0,</math> because <math>y=x</math> is lower to <math>P.</math> Thus, we solve the equation, <cmath>(3z-w)\sqrt{2} = (w-z)\sqrt{10} \Rightarrow  3z-w = \sqrt{5} \cdot(w-z)\Rightarrow (\sqrt{5} +1)w = (3+\sqrt{5})z.</cmath> Thus, the value of <math>\frac{w}{z} = \frac{3+\sqrt{5}}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}.</math> Thus, the answer is <math>\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.</math>
 
Note that the distance between the point <math>(m,n)</math> to line <math>Ax + By + C = 0,</math> is <math>\frac{|Am + Bn +C|}{\sqrt{A^2 +B^2}}.</math> Because line <math>y=kx</math> is a perpendicular bisector, a point on the line <math>y=kx</math> must be equidistant from the two lines(<math>y=x</math> and <math>y=3x</math>), call this point <math>P(z,w).</math> Because, the line <math>y=kx</math> passes through the origin, our requested value of <math>k,</math> which is the slope of the angle bisector line, can be found when evaluating the value of <math>\frac{w}{z}.</math> By the Distance from Point to Line formula we get the equation, <cmath>\frac{|3z-w|}{\sqrt{10}} = \frac{|z-w|}{\sqrt{2}}.</cmath> Note that <math>|3z-w|\ge 0,</math> because <math>y=3x</math> is higher than <math>P</math> and <math>|z-w|\le 0,</math> because <math>y=x</math> is lower to <math>P.</math> Thus, we solve the equation, <cmath>(3z-w)\sqrt{2} = (w-z)\sqrt{10} \Rightarrow  3z-w = \sqrt{5} \cdot(w-z)\Rightarrow (\sqrt{5} +1)w = (3+\sqrt{5})z.</cmath> Thus, the value of <math>\frac{w}{z} = \frac{3+\sqrt{5}}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}.</math> Thus, the answer is <math>\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.</math>
  
Line 143: Line 154:
 
~NH14
 
~NH14
  
 +
== Solution 5 (Trigonometry) ==
 +
 +
This problem can be trivialized using basic trig identities. Let the angle made by <math>y=x</math> and the <math>x</math>-axis be <math>\theta_{1}</math> and the angle made by <math>y=3x</math> and the <math>x</math>-axis be <math>\theta_{3}</math>. Note that <math>\tan(\theta_{1})=1</math> and <math>\tan(\theta_{3})=3</math>, and this is why we named them as such. Let the angle made by <math>y=kx</math> be denoted as <math>\theta_{k}</math>. Since <math>y=kx</math> bisects the two lines, notice that
 +
<cmath>\theta_k-\theta_1=\theta_3-\theta_k.</cmath>
 +
 +
Now, we can take the tangent and apply the tangent subtraction formula:
 +
<cmath>
 +
\begin{align*}
 +
\tan(\theta_k-\theta_1)&=\tan(\theta_3-\theta_k)\\
 +
\frac{\tan(\theta_k)-\tan(\theta_1)}{1+\tan(\theta_k)\tan(\theta_1)}&=\frac{\tan(\theta_3)-\tan(\theta_k)}{1+\tan(\theta_3)\tan(\theta_k)}\\
 +
\frac{k-1}{1+k}&=\frac{3-k}{1+3k}\\
 +
(k-1)(1+3k)&=(1+k)(3-k)\\
 +
3k^2-2k-1&=-k^2+2k+3\\
 +
4k^2-4k-4&=0\\
 +
k^2-k-1&=0\\
 +
\implies k&=\frac{1\pm \sqrt{5}}{2}
 +
\end{align*}
 +
</cmath>
 +
Since <math>y=kx</math> is increasing, <math>k>0</math>; thus, <math>k=\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.</math>
 +
 +
~Indiiiigo
 +
 +
== Solution 6 (Trigonometry) ==
 +
Denote by <math>\alpha_1</math>, <math>\alpha_2</math>, <math>\alpha_3</math> the acute angles formed between the <math>x</math>-axis and lines <math>y = x</math>, <math>y = 3 x</math>, <math>y = k x</math>, respectively.
 +
Hence, <math>\tan \alpha_1 = 1</math>, <math>\tan \alpha_2 = 3</math>, <math>\tan \alpha_3 = k</math>.
 +
 +
Denote by <math>\theta</math> the acute angle formed by lines <math>y = x</math> and <math>y = 3 x</math>.
 +
 +
Hence,
 +
<cmath>
 +
\begin{align*}
 +
\tan \theta & = \tan \left( \alpha_2 - \alpha_1 \right) \\
 +
& = \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_1 \tan \alpha_2} \\
 +
&= \frac{3 - 1}{1 + 1 \cdot 3} \\
 +
& = \frac{1}{2} .
 +
\end{align*}
 +
</cmath>
 +
 +
Following from the double-angle identity, we have
 +
<cmath>
 +
\[
 +
\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} .
 +
\]
 +
</cmath>
 +
 +
Hence, <math>\tan \frac{\theta}{2} = - 2 \pm \sqrt{5}</math>.
 +
 +
Because <math>\theta</math> is acute, <math>\frac{\theta}{2}</math> is acute.
 +
Hence, <math>\tan \frac{\theta}{2} > 0</math>.
 +
Hence, <math>\tan \frac{\theta}{2} = - 2 + \sqrt{5}</math>.
 +
 +
Because line <math>y = kx</math> is the angle bisector of <math>\theta</math>, the angle between lines <math>y = x</math> and <math>y = k x</math> is <math>\frac{\theta}{2}</math>.
 +
 +
Hence,
 +
<cmath>
 +
\begin{align*}
 +
\tan \alpha_3 & = \tan \left( \alpha_1 + \frac{\theta}{2} \right) \\
 +
& = \frac{\tan \alpha_1 + \tan \frac{\theta}{2}}{1 - \tan \alpha_1 \tan \frac{\theta}{2}} \\
 +
&= \frac{1 + \left( - 2 + \sqrt{5} \right)}{1 - 1 \cdot \left( - 2 + \sqrt{5} \right) } \\
 +
& = \frac{\sqrt{5} - 1}{3 - \sqrt{5}} \\
 +
& = \frac{1 + \sqrt{5}}{2} .
 +
\end{align*}
 +
</cmath>
 +
 +
Therefore, the answer is <math>\boxed{\textbf{(A) }\frac{1 + \sqrt{5}}{2}}</math>.
 +
 +
~Steven Chen (www.professorchenedu.com)
 +
 +
== Solution 7 (Vectors) ==
 +
 +
[[Image:2021FallAMC12AProblem13.png|center|500px]]
 +
 +
When drawing the lines <math>y=x</math> and <math>y=3x</math>, it is natural to choose points <math>A(1,1)</math> and <math>B(1,3)</math> together with origin <math>O</math>. See the figure attached.
 +
We utilize the fact that if <math>\mathbf{u}</math> and <math>\mathbf{v}</math> are vectors of same length, then <math>\mathbf{u} + \mathbf{v}</math> bisects the angle between <math>\mathbf{u}</math> and <math>\mathbf{v}</math>.
 +
 +
In particular, we scale the vector <math>\overrightarrow{OA} = (1,1)</math> by the factor of <math>\frac{OB}{OA} = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5}</math> to get <math> \overrightarrow{OA'} \coloneqq \sqrt{5}\,\overrightarrow{OA} = \left(\sqrt{5}, \sqrt{5}\right)</math>.
 +
So by adding vectors <math>\overrightarrow{OA'}</math> and <math>\overrightarrow{OB} = (1,3)</math> we get
 +
<cmath>
 +
    {\color[rgb]{0.666667,0,0}\overrightarrow{OC}}
 +
    \coloneqq {\color[rgb]{0,0.4,0.65}\overrightarrow{OA'}} + {\color[rgb]{0,0.4,0.65}\overrightarrow{OB}}
 +
    = \left( 1 + \sqrt{5}, 3 + \sqrt{5} \right)
 +
</cmath>
 +
which bisects the acute angle formed by lines <math>OA: y = x</math> and <math>OB: y = 3x</math>. (In other words, quadrilateral <math>OBCA'</math> is a rhombus.)
 +
Finally, observe that <math>C\!\left(1+\sqrt{5}, 3+\sqrt{5}\right)</math> lies on the line <math>y = kx</math> whose slope is
 +
<cmath>
 +
    k = \frac{3+\sqrt{5}}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}.
 +
</cmath>
 +
Thus, the answer is <math>\boxed{\textbf{(A)}\;\frac{1+\sqrt{5}}{2}}</math>. <math>\blacksquare</math>
 +
 +
~VensL.
 +
 +
== Solution 8 (Dot Product) ==
 +
 +
We notice that the line <math>y = x</math> can be represented as the vector <math>\vec{A} = \begin{bmatrix}
 +
    1 \\ 1
 +
    \end{bmatrix}</math>
 +
and <math>y = 3x</math> as <math>\vec{B} = \begin{bmatrix}
 +
    1 \\ 3
 +
    \end{bmatrix}</math>
 +
as the "slope" of both vectors represent the coefficient of <math>x</math>.
 +
 +
Then, we can represent <math>y = kx</math> as <math>\vec{C} = \begin{bmatrix}
 +
    1 \\ k
 +
    \end{bmatrix}</math> and notice that since <math>C</math> is in essence an angle bisector, <cmath>\theta = \angle \vec{A}\vec{C} = \angle \vec{B}\vec{C}</cmath>
 +
 +
<cmath>A \cdot C = |A|\cdot|C|\cos(\theta_1)</cmath> where <math>\theta_1 = \angle \vec{A}\vec{C} = \theta</math>
 +
<cmath>B \cdot C = |B|\cdot|C|\cos(\theta_2)</cmath> where <math>\theta_2 = \angle \vec{B}\vec{C} = \theta</math>
 +
 +
Since both <math>\theta_i</math>'s are equivalent, we may simply represent them with <math>\theta</math>.
 +
 +
Simplifying both equations by performing the necessary operations, we get
 +
 +
<cmath>1+k = \sqrt{2} \cdot \sqrt{k^2 + 1} \cdot \cos(\theta) \implies \frac{1+k}{\sqrt{2}} = \sqrt{k^2 + 1} \cos(\theta)</cmath>
 +
 +
<cmath>1+3k = \sqrt{10} \cdot \sqrt{k^2 + 1} \cdot \cos(\theta)</cmath>
 +
 +
Substituting the first into the second, we get
 +
<cmath>1 + 3k = \sqrt{10} \cdot \frac{1+k}{\sqrt{2}} \implies k=\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}</cmath>
 +
 +
~ <math>\color{magenta} zoomanTV</math>
 +
 +
==Video Solution by TheBeautyofMath==
 +
https://youtu.be/ToiOlqWz3LY?t=504
 +
 +
~IceMatrix
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021 Fall|ab=A|num-b=12|num-a=14}}
 
{{AMC12 box|year=2021 Fall|ab=A|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:27, 1 September 2024

Problem

The angle bisector of the acute angle formed at the origin by the graphs of the lines $y = x$ and $y=3x$ has equation $y=kx.$ What is $k?$

$\textbf{(A)} \ \frac{1+\sqrt{5}}{2} \qquad \textbf{(B)} \ \frac{1+\sqrt{7}}{2} \qquad \textbf{(C)} \ \frac{2+\sqrt{3}}{2} \qquad \textbf{(D)} \ 2\qquad \textbf{(E)} \ \frac{2+\sqrt{5}}{2}$

Diagram

[asy] /* Made by MRENTHUSIASM */ size(250);   real xMin = -1; real xMax = 4; real yMin = -1; real yMax = 4; real k = (1+sqrt(5))/2;  pair O; O = origin;  draw(anglemark(dir((1,1)),O,dir((1,k)),20), red); draw(anglemark(dir((1,k)),O,dir((1,3)),20), red); add(pathticks(anglemark(dir((1,1)),O,dir((1,k)),20), n = 1, r = 0.05, s = 5, red)); add(pathticks(anglemark(dir((1,k)),O,dir((1,3)),20), n = 1, r = 0.05, s = 5, red)); draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("$x$",(xMax,0),(2,0)); label("$y$",(0,yMax),(0,2)); label("$y=x$",4*dir((1,1))); label("$y=3x$",4*dir((1,3))); label("$y=kx$",4*dir((1,k)));  draw(O--3.75*dir((1,1))^^O--3.75*dir((1,3))^^O--3.75*dir((1,k))); [/asy] ~MRENTHUSIASM

Solution 1 (Angle Bisector Theorem)

This solution refers to the Diagram section.

Let $O=(0,0), A=(3,3), B=(1,3),$ and $C=\left(\frac3k,3\right).$ As shown below, note that $\overline{OA}, \overline{OB},$ and $\overline{OC}$ are on the lines $y=x, y=3x,$ and $y=kx,$ respectively. By the Distance Formula, we have $OA=3\sqrt2, OB=\sqrt{10}, AC=3-\frac3k,$ and $BC=\frac3k-1.$ [asy] /* Made by MRENTHUSIASM */ size(250);   real xMin = -1; real xMax = 4; real yMin = -1; real yMax = 4; real k = (1+sqrt(5))/2;  pair O, A, B, C; O = origin; A = (3,3); B = (1,3); C = (3/k,3);  draw(anglemark(dir((1,1)),O,dir((1,k)),20), red); draw(anglemark(dir((1,k)),O,dir((1,3)),20), red);  dot("$O$",O,1.5*SW,linewidth(4.5)); dot("$A$",A,1.5*N,linewidth(4.5)); dot("$B$",B,1.5*N,linewidth(4.5)); dot("$C$",C,1.5*N,linewidth(4.5));  add(pathticks(anglemark(dir((1,1)),O,dir((1,k)),20), n = 1, r = 0.05, s = 5, red)); add(pathticks(anglemark(dir((1,k)),O,dir((1,3)),20), n = 1, r = 0.05, s = 5, red)); draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); draw(A--B--O--cycle^^O--C);  label("$x$",(xMax,0),(2,0)); label("$y$",(0,yMax),(0,2)); label("$3\sqrt{2}$",midpoint(O--A),1.5*E,red+fontsize(10)); label("$\sqrt{10}$",midpoint(O--B),W,red+fontsize(10)); label("$3-\frac3k$",midpoint(A--C),N,red+fontsize(10)); label("$\frac3k-1$",midpoint(B--C),N,red+fontsize(10)); [/asy] By the Angle Bisector Theorem, we get $\frac{OA}{OB}=\frac{AC}{BC},$ or \begin{align*} \frac{3\sqrt2}{\sqrt{10}}&=\frac{3-\frac3k}{\frac3k-1} \\ \frac{3\sqrt2}{\sqrt{10}}&=\frac{3k-3}{3-k} \\ \frac{\sqrt2}{\sqrt{10}}&=\frac{k-1}{3-k} \\ \frac15&=\frac{(k-1)^2}{(3-k)^2} \\ 5(k-1)^2&=(3-k)^2 \\ 4k^2-4k-4&=0 \\ k^2-k-1&=0 \\ k&=\frac{1\pm\sqrt5}{2}. \end{align*} Since $k>0,$ the answer is $k=\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.$

Remark

The value of $k$ is known as the Golden Ratio: $\phi=\frac{1+\sqrt{5}}{2}\approx 1.61803398875.$

~MRENTHUSIASM

Solution 2 (Analytic and Plane Geometry)

[asy] size(180);   real xMin = -0.5; real xMax = 2; real yMin = -0.5; real yMax = 4.5; real k = (1+sqrt(5))/2; real m = sqrt(2); real n = sqrt(10); real q = sqrt((5+sqrt(5))/2);  pair O; O = origin;  draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("$O$",(-0.2,-0.2),(0,0)); label("$x$",(xMax,0),(2,0)); label("$y$",(0,yMax),(0,2)); label("$A$",(1,0.95),(1,1)); label("$B$",(1,2.80),(1,3)); label("$C$",(1.06,k-0.05),(1,k));  draw(O--m*dir((1,1))^^O--n*dir((1,3))^^O--q*dir((1,k))); draw((1,1)--(1,3)); [/asy] Consider the graphs of $f(x)=x$ and $g(x)=3x$. Since it will be easier to consider at unity, let $x=1$, then we have $f(1)=1$ and $g(1)=3$.

Now, let $O$ be $(0,0)$, $A$ be $(1,1)$, and $B$ be $(1,3)$. Cutting through side $AB$ of triangle $OAB$ is the angle bisector $OC$ where $C$ is on side $AB$.

Hence, by the Angle Bisector Theorem, we get $\frac{OB}{OA}=\frac{BC}{AC}$.

By the Pythagorean Theorem, $OA=\sqrt{2}$ and $OB=\sqrt{10}$. Therefore, $\frac{BC}{AC}=\sqrt{5} \implies BC=\sqrt{5}AC$.

Since $AB=AC+BC=2$, it is easy derive $AC+\sqrt{5}AC=2 \implies AC=\frac{2}{1+\sqrt{5}}=\frac{-1+\sqrt{5}}{2}$.

The vertical distance between the $x$-axis and $C$ is $\frac{-1+\sqrt{5}}{2}+1=\frac{1+\sqrt{5}}{2}$. Because the $x$-coordinate of point $C$ is $1$, the slope we need to find is just the $y$-coordinate $\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.$

~Wilhelm Z

Solution 3 (Analytic and Plane Geometry)

Let's begin by drawing a triangle that starts at the origin. Assume that the base of the triangle goes to the point $x = 1$. The line $x = y$ is the hypotenuse of a right triangle with side length $1$. The hypotenuse' length is $\sqrt 2$. Then, let's draw the line $x = 3y$. We extend it to when $x = 1$. The length of the hypotenuse of the larger triangle is $\sqrt {10}$ with legs $1, 3$. We then draw the angle bisector. We should label the triangle, so here we go. $AC$ is $1$. $BC$ is $3$. $AB$ is $\sqrt {10}$. When the line with angle $45 ^\circ$ intersects the line $x = 1$, call the point $D$. When the angle bisector intersects the line $x = 1$, call the point $E$. By Angle Bisector Theorem, $\frac {DE}{DB} = \frac {\sqrt {2}}{\sqrt{10}}$. Since $BC$ is $3$ and $DC$ is $1$, we have that $BD$ is $2$. Solving for $DE$, we get that $DE$ is $\frac {\sqrt 5 - 1}{2}$.

Since $DE$ is $\frac {\sqrt 5 - 1}{2}$, we have that $CE$ is just one more than that. Therefore, $CE$ is $\frac {1+\sqrt 5}{2}$. Since $AC$ is $1$, we get that $k$ is $\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}$.

Remark

The answer turns out to be the golden ratio or phi ($\phi$). Phi has many properties and is related to the Fibonacci sequence. See Phi.

~Arcticturn $\blacksquare$

Solution 4 (Distance Between a Point and a Line)

Note that the distance between the point $(m,n)$ to line $Ax + By + C = 0,$ is $\frac{|Am + Bn +C|}{\sqrt{A^2 +B^2}}.$ Because line $y=kx$ is a perpendicular bisector, a point on the line $y=kx$ must be equidistant from the two lines($y=x$ and $y=3x$), call this point $P(z,w).$ Because, the line $y=kx$ passes through the origin, our requested value of $k,$ which is the slope of the angle bisector line, can be found when evaluating the value of $\frac{w}{z}.$ By the Distance from Point to Line formula we get the equation, \[\frac{|3z-w|}{\sqrt{10}} = \frac{|z-w|}{\sqrt{2}}.\] Note that $|3z-w|\ge 0,$ because $y=3x$ is higher than $P$ and $|z-w|\le 0,$ because $y=x$ is lower to $P.$ Thus, we solve the equation, \[(3z-w)\sqrt{2} = (w-z)\sqrt{10} \Rightarrow  3z-w = \sqrt{5} \cdot(w-z)\Rightarrow (\sqrt{5} +1)w = (3+\sqrt{5})z.\] Thus, the value of $\frac{w}{z} = \frac{3+\sqrt{5}}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}.$ Thus, the answer is $\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.$

(Fun Fact: The value $\frac{1+\sqrt{5}}{2}$ is the golden ratio $\phi.$)

~NH14

Solution 5 (Trigonometry)

This problem can be trivialized using basic trig identities. Let the angle made by $y=x$ and the $x$-axis be $\theta_{1}$ and the angle made by $y=3x$ and the $x$-axis be $\theta_{3}$. Note that $\tan(\theta_{1})=1$ and $\tan(\theta_{3})=3$, and this is why we named them as such. Let the angle made by $y=kx$ be denoted as $\theta_{k}$. Since $y=kx$ bisects the two lines, notice that \[\theta_k-\theta_1=\theta_3-\theta_k.\]

Now, we can take the tangent and apply the tangent subtraction formula: \begin{align*} \tan(\theta_k-\theta_1)&=\tan(\theta_3-\theta_k)\\ \frac{\tan(\theta_k)-\tan(\theta_1)}{1+\tan(\theta_k)\tan(\theta_1)}&=\frac{\tan(\theta_3)-\tan(\theta_k)}{1+\tan(\theta_3)\tan(\theta_k)}\\ \frac{k-1}{1+k}&=\frac{3-k}{1+3k}\\ (k-1)(1+3k)&=(1+k)(3-k)\\ 3k^2-2k-1&=-k^2+2k+3\\ 4k^2-4k-4&=0\\ k^2-k-1&=0\\ \implies k&=\frac{1\pm \sqrt{5}}{2} \end{align*} Since $y=kx$ is increasing, $k>0$; thus, $k=\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}.$

~Indiiiigo

Solution 6 (Trigonometry)

Denote by $\alpha_1$, $\alpha_2$, $\alpha_3$ the acute angles formed between the $x$-axis and lines $y = x$, $y = 3 x$, $y = k x$, respectively. Hence, $\tan \alpha_1 = 1$, $\tan \alpha_2 = 3$, $\tan \alpha_3 = k$.

Denote by $\theta$ the acute angle formed by lines $y = x$ and $y = 3 x$.

Hence, \begin{align*} \tan \theta & = \tan \left( \alpha_2 - \alpha_1 \right) \\ & = \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_1 \tan \alpha_2} \\ &= \frac{3 - 1}{1 + 1 \cdot 3} \\ & = \frac{1}{2} . \end{align*}

Following from the double-angle identity, we have \[ \tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} . \]

Hence, $\tan \frac{\theta}{2} = - 2 \pm \sqrt{5}$.

Because $\theta$ is acute, $\frac{\theta}{2}$ is acute. Hence, $\tan \frac{\theta}{2} > 0$. Hence, $\tan \frac{\theta}{2} = - 2 + \sqrt{5}$.

Because line $y = kx$ is the angle bisector of $\theta$, the angle between lines $y = x$ and $y = k x$ is $\frac{\theta}{2}$.

Hence, \begin{align*} \tan \alpha_3 & = \tan \left( \alpha_1 + \frac{\theta}{2} \right) \\ & = \frac{\tan \alpha_1 + \tan \frac{\theta}{2}}{1 - \tan \alpha_1 \tan \frac{\theta}{2}} \\ &= \frac{1 + \left( - 2 + \sqrt{5} \right)}{1 - 1 \cdot \left( - 2 + \sqrt{5} \right) } \\ & = \frac{\sqrt{5} - 1}{3 - \sqrt{5}} \\ & = \frac{1 + \sqrt{5}}{2} . \end{align*}

Therefore, the answer is $\boxed{\textbf{(A) }\frac{1 + \sqrt{5}}{2}}$.

~Steven Chen (www.professorchenedu.com)

Solution 7 (Vectors)

2021FallAMC12AProblem13.png

When drawing the lines $y=x$ and $y=3x$, it is natural to choose points $A(1,1)$ and $B(1,3)$ together with origin $O$. See the figure attached. We utilize the fact that if $\mathbf{u}$ and $\mathbf{v}$ are vectors of same length, then $\mathbf{u} + \mathbf{v}$ bisects the angle between $\mathbf{u}$ and $\mathbf{v}$.

In particular, we scale the vector $\overrightarrow{OA} = (1,1)$ by the factor of $\frac{OB}{OA} = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5}$ to get $\overrightarrow{OA'} \coloneqq \sqrt{5}\,\overrightarrow{OA} = \left(\sqrt{5}, \sqrt{5}\right)$. So by adding vectors $\overrightarrow{OA'}$ and $\overrightarrow{OB} = (1,3)$ we get \[{\color[rgb]{0.666667,0,0}\overrightarrow{OC}}      \coloneqq {\color[rgb]{0,0.4,0.65}\overrightarrow{OA'}} + {\color[rgb]{0,0.4,0.65}\overrightarrow{OB}}      = \left( 1 + \sqrt{5}, 3 + \sqrt{5} \right)\] which bisects the acute angle formed by lines $OA: y = x$ and $OB: y = 3x$. (In other words, quadrilateral $OBCA'$ is a rhombus.) Finally, observe that $C\!\left(1+\sqrt{5}, 3+\sqrt{5}\right)$ lies on the line $y = kx$ whose slope is \[k = \frac{3+\sqrt{5}}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{2}.\] Thus, the answer is $\boxed{\textbf{(A)}\;\frac{1+\sqrt{5}}{2}}$. $\blacksquare$

~VensL.

Solution 8 (Dot Product)

We notice that the line $y = x$ can be represented as the vector $\vec{A} = \begin{bmatrix}      1 \\ 1     \end{bmatrix}$ and $y = 3x$ as $\vec{B} = \begin{bmatrix}      1 \\ 3     \end{bmatrix}$ as the "slope" of both vectors represent the coefficient of $x$.

Then, we can represent $y = kx$ as $\vec{C} = \begin{bmatrix}      1 \\ k     \end{bmatrix}$ and notice that since $C$ is in essence an angle bisector, \[\theta = \angle \vec{A}\vec{C} = \angle \vec{B}\vec{C}\]

\[A \cdot C = |A|\cdot|C|\cos(\theta_1)\] where $\theta_1 = \angle \vec{A}\vec{C} = \theta$ \[B \cdot C = |B|\cdot|C|\cos(\theta_2)\] where $\theta_2 = \angle \vec{B}\vec{C} = \theta$

Since both $\theta_i$'s are equivalent, we may simply represent them with $\theta$.

Simplifying both equations by performing the necessary operations, we get

\[1+k = \sqrt{2} \cdot \sqrt{k^2 + 1} \cdot \cos(\theta) \implies \frac{1+k}{\sqrt{2}} = \sqrt{k^2 + 1} \cos(\theta)\]

\[1+3k = \sqrt{10} \cdot \sqrt{k^2 + 1} \cdot \cos(\theta)\]

Substituting the first into the second, we get \[1 + 3k = \sqrt{10} \cdot \frac{1+k}{\sqrt{2}} \implies k=\boxed{\textbf{(A)} \ \frac{1+\sqrt{5}}{2}}\]

~ $\color{magenta} zoomanTV$

Video Solution by TheBeautyofMath

https://youtu.be/ToiOlqWz3LY?t=504

~IceMatrix

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png