Difference between revisions of "2021 Fall AMC 10A Problems/Problem 15"
(→Solution 2 (Similar Triangles)) |
MRENTHUSIASM (talk | contribs) (Removed unnecessary edits, as the original solution is clear enough that AO1 = 2r) |
||
(85 intermediate revisions by 12 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
Isosceles triangle <math>ABC</math> has <math>AB = AC = 3\sqrt6</math>, and a circle with radius <math>5\sqrt2</math> is tangent to line <math>AB</math> at <math>B</math> and to line <math>AC</math> at <math>C</math>. What is the area of the circle that passes through vertices <math>A</math>, <math>B</math>, and <math>C?</math> | Isosceles triangle <math>ABC</math> has <math>AB = AC = 3\sqrt6</math>, and a circle with radius <math>5\sqrt2</math> is tangent to line <math>AB</math> at <math>B</math> and to line <math>AC</math> at <math>C</math>. What is the area of the circle that passes through vertices <math>A</math>, <math>B</math>, and <math>C?</math> | ||
<math>\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi</math> | <math>\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi</math> | ||
− | ==Solution 1== | + | ==Solution 1 (Cyclic Quadrilateral)== |
− | Let the | + | Let <math>\odot O_1</math> be the circle with radius <math>5\sqrt2</math> that is tangent to <math>\overleftrightarrow{AB}</math> at <math>B</math> and to <math>\overleftrightarrow{AC}</math> at <math>C.</math> Note that <math>\angle ABO_1 = \angle ACO_1 = 90^\circ.</math> Since the opposite angles of quadrilateral <math>ABO_1C</math> are supplementary, quadrilateral <math>ABO_1C</math> is cyclic. |
− | < | + | |
− | + | Let <math>\odot O_2</math> be the circumcircle of quadrilateral <math>ABO_1C.</math> It follows that <math>\odot O_2</math> is also the circumcircle of <math>\triangle ABC,</math> as shown below: | |
+ | <asy> | ||
+ | /* Made by MRENTHUSIASM */ | ||
+ | size(200); | ||
+ | pair A, B, C, D, O1, O2; | ||
+ | A = (0,2sqrt(26)); | ||
+ | O1 = (0,0); | ||
+ | B = intersectionpoints(Circle(A,3sqrt(6)),Circle(O1,5sqrt(2)))[0]; | ||
+ | C = intersectionpoints(Circle(A,3sqrt(6)),Circle(O1,5sqrt(2)))[1]; | ||
+ | O2 = midpoint(A--O1); | ||
+ | fill(A--B--C--cycle, yellow); | ||
+ | dot("$A$",A,1.5*N,linewidth(4)); | ||
+ | dot("$B$",B,1.5*W,linewidth(4)); | ||
+ | dot("$C$",C,1.5*E,linewidth(4)); | ||
+ | dot("$O_1$",O1,1.5*S,linewidth(4)); | ||
+ | dot("$O_2$",O2,1.5*N,linewidth(4)); | ||
+ | label("$3\sqrt6$",midpoint(A--B),scale(0.5)*rotate(90)*dir(midpoint(A--B)--A),red+fontsize(10)); | ||
+ | label("$3\sqrt6$",midpoint(A--C),scale(0.5)*rotate(90)*dir(midpoint(A--C)--C),red+fontsize(10)); | ||
+ | label("$5\sqrt2$",midpoint(O1--B),0.5*SW,red+fontsize(10)); | ||
+ | label("$5\sqrt2$",midpoint(O1--C),0.5*SE,red+fontsize(10)); | ||
+ | markscalefactor=0.05; | ||
+ | draw(rightanglemark(A,B,O1)^^rightanglemark(A,C,O1),red); | ||
+ | draw(A--B--O1--C--cycle^^B--C^^circumcircle(A,B,C)); | ||
+ | </asy> | ||
+ | By the Inscribed Angle Theorem, we conclude that <math>\overline{AO_1}</math> is the diameter of <math>\odot O_2.</math> By the Pythagorean Theorem on right <math>\triangle ABO_1,</math> we have <cmath>AO_1 = \sqrt{AB^2 + BO_1^2} = 2\sqrt{26}.</cmath> | ||
+ | Therefore, the area of <math>\odot O_2</math> is <math>\pi\cdot\left(\frac{AO_1}{2}\right)^2=\boxed{\textbf{(C) }26\pi}.</math> | ||
− | + | ~MRENTHUSIASM ~kante314 | |
==Solution 2 (Similar Triangles)== | ==Solution 2 (Similar Triangles)== | ||
− | |||
<asy> | <asy> | ||
− | |||
import olympiad; | import olympiad; | ||
unitsize(50); | unitsize(50); | ||
− | pair A,B,C,O; | + | pair A,B,C,D,E,I,F,G,O; |
− | A=origin; B=(2, | + | A=origin; B=(2,3); C=(-2,3); D=(4.3,6.3); E=(-4.3,6.3); F=(1,1.5); G=(-1,1.5); |
O=circumcenter(A,B,C); // olympiad - circumcenter | O=circumcenter(A,B,C); // olympiad - circumcenter | ||
+ | I=incenter(A,D,E); | ||
draw(A--B--C--cycle); | draw(A--B--C--cycle); | ||
dot(O); | dot(O); | ||
+ | dot(I); | ||
+ | dot(F); | ||
+ | dot(G); | ||
draw(circumcircle(A,B,C)); // olympiad - circumcircle | draw(circumcircle(A,B,C)); // olympiad - circumcircle | ||
− | label("$O$",O, | + | draw(incircle(A,D,E)); |
+ | draw(I--B); | ||
+ | draw(I--C); | ||
+ | draw(I--A); | ||
+ | draw(rightanglemark(A,C,I)); | ||
+ | draw(rightanglemark(A,B,I)); | ||
+ | draw(O--F); | ||
+ | draw(O--G); | ||
+ | draw(rightanglemark(A,F,O)); | ||
+ | draw(rightanglemark(A,G,O)); | ||
+ | |||
+ | label("$O$",O,W); | ||
label("$A$",A,S); | label("$A$",A,S); | ||
− | label("$B$",B, | + | label("$B$",B,N); |
label("$C$",C,W); | label("$C$",C,W); | ||
− | label("$3\sqrt{6}$",(1.5,1),S); | + | label("$D$",F,S); |
− | label("$3\sqrt{6}$",(-1.5,1),S); | + | label("$E$",G,W); |
+ | |||
+ | label("$3\sqrt{6}$",(1.5,1.5),S); | ||
+ | label("$3\sqrt{6}$",(-1.5,1.5),S); | ||
+ | label("$5\sqrt{2}$",(1,3.625),N); | ||
+ | label("$5\sqrt{2}$",(-1,3.625),N); | ||
+ | label("$I$",I,N); | ||
+ | label("$r$",(-0.25,1.5),E); | ||
+ | label("$r$",(0.5,2.125),S); | ||
+ | add(pathticks(A--F,1,0.5,0,2)); | ||
+ | add(pathticks(F--B,1,0.5,0,2)); | ||
+ | add(pathticks(A--G,1,0.5,0,2)); | ||
+ | add(pathticks(G--C,1,0.5,0,2)); | ||
+ | </asy> | ||
+ | Because circle <math>I</math> is tangent to <math>\overline{AB}</math> at <math>B, \angle{ABI} \cong 90^{\circ}</math>. Because <math>O</math> is the circumcenter of <math>\bigtriangleup ABC, \overline{OD}</math> is the perpendicular bisector of <math>\overline{AB}</math>, and <math>\angle{BAI} \cong \angle{DAO}</math>, so therefore <math>\bigtriangleup ADO \sim \bigtriangleup ABI</math> by AA similarity. Then we have <math>\frac{AD}{AB} = \frac{DO}{BI} \implies \frac{1}{2} = \frac{r}{5\sqrt{2}} \implies r = \frac{5\sqrt{2}}{2}</math>. We also know that <math>\overline{AD} = \frac{3\sqrt{6}}{2}</math> because of the perpendicular bisector, so the hypotenuse of <math>\bigtriangleup ADO</math> is <cmath>\sqrt{\left(\frac{5\sqrt{2}}{2}\right)^2+\left(\frac{3\sqrt{6}}{2}\right)^2} = \sqrt{\frac{25}{2}+\frac{27}{2}} = \sqrt{26}.</cmath> | ||
+ | This is the radius of the circumcircle of <math>\bigtriangleup ABC</math>, so the area of this circle is <math>\boxed{\textbf{(C) }26\pi}</math>. | ||
+ | |||
+ | ~KingRavi | ||
+ | == Solution 3 (Trigonometry) == | ||
+ | Denote by <math>O</math> the center of the circle that is tangent to line <math>AB</math> at <math>B</math> and to line <math>AC</math> at <math>C</math>. | ||
− | </ | + | Because this circle is tangent to line <math>AB</math> at <math>B</math>, we have <math>OB \perp AB</math> and <math>OB = 5 \sqrt{2}</math>. |
+ | |||
+ | Because this circle is tangent to line <math>AC</math> at <math>C</math>, we have <math>OC \perp AC</math> and <math>OC = 5 \sqrt{2}</math>. | ||
+ | |||
+ | Because <math>AB = AC</math>, <math>OB = OC</math>, <math>AO = AO</math>, we get <math>\triangle ABO \cong \triangle ACO</math>. Hence, <math>\angle BAO = \angle CAO</math>. | ||
+ | |||
+ | Let <math>AO</math> and <math>BC</math> meet at point <math>D</math>. | ||
+ | Because <math>AB = AC</math>, <math>\angle BAO = \angle CAO</math>, <math>AD = AD</math>, we get <math>\triangle ABD \cong \triangle ACD</math>. Hence, <math>BD = CD</math> and <math>\angle ADB = \angle ADC = 90^\circ</math>. | ||
+ | |||
+ | Denote <math>\theta = \angle BAO</math>. Hence, <math>\angle BAC = 2 \theta</math>. | ||
+ | |||
+ | Denote by <math>R</math> the circumradius of <math>\triangle ABC</math>. | ||
+ | In <math>\triangle ABC</math>, following from the law of sines, <math>2 R = \frac{BC}{\sin \angle BAC}</math>. | ||
+ | |||
+ | Therefore, the area of the circumcircle of <math>\triangle ABC</math> is | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \pi R^2 & = \pi \left( \frac{BC}{2 \sin \angle BAC} \right)^2 \\ | ||
+ | & = \pi \left( \frac{2 BD}{2 \sin \angle BAC} \right)^2 \\ | ||
+ | & = \pi \left( \frac{BD}{\sin 2 \theta} \right)^2 \\ | ||
+ | & = \pi \left( \frac{AB \sin \theta }{\sin 2 \theta} \right)^2 \\ | ||
+ | & = \pi \left( \frac{AB \sin \theta }{2 \sin \theta \cos \theta} \right)^2 \\ | ||
+ | & = \pi \left( \frac{AB }{2 \cos \theta} \right)^2 \\ | ||
+ | & = \pi \left( \frac{AO}{2} \right)^2 \\ | ||
+ | & = \frac{\pi}{4} \left( AB^2 + OB^2 \right) \\ | ||
+ | & = \boxed{\textbf{(C) }26\pi}. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | ~Steven Chen (www.professorchenedu.com) | ||
+ | |||
+ | ==Video Solution (HOW TO THINK CREATIVELY!!!)== | ||
+ | https://youtu.be/T2VFw2lEthY | ||
+ | |||
+ | ~Education, the Study of Everything | ||
+ | |||
+ | ==Video Solution by The Power of Logic== | ||
+ | https://youtu.be/2lDDbOAmW18 | ||
+ | |||
+ | ~math2718281828459 | ||
− | Solution | + | ==Video Solution == |
+ | https://youtu.be/zq3UPu4nwsE?t=1674 | ||
− | + | == Video Solution == | |
+ | https://youtu.be/DVuf-uXjfzY?t=211 | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=A|num-b=14|num-a=16}} | {{AMC10 box|year=2021 Fall|ab=A|num-b=14|num-a=16}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 12:43, 5 May 2024
Contents
Problem
Isosceles triangle has , and a circle with radius is tangent to line at and to line at . What is the area of the circle that passes through vertices , , and
Solution 1 (Cyclic Quadrilateral)
Let be the circle with radius that is tangent to at and to at Note that Since the opposite angles of quadrilateral are supplementary, quadrilateral is cyclic.
Let be the circumcircle of quadrilateral It follows that is also the circumcircle of as shown below: By the Inscribed Angle Theorem, we conclude that is the diameter of By the Pythagorean Theorem on right we have Therefore, the area of is
~MRENTHUSIASM ~kante314
Solution 2 (Similar Triangles)
Because circle is tangent to at . Because is the circumcenter of is the perpendicular bisector of , and , so therefore by AA similarity. Then we have . We also know that because of the perpendicular bisector, so the hypotenuse of is This is the radius of the circumcircle of , so the area of this circle is .
~KingRavi
Solution 3 (Trigonometry)
Denote by the center of the circle that is tangent to line at and to line at .
Because this circle is tangent to line at , we have and .
Because this circle is tangent to line at , we have and .
Because , , , we get . Hence, .
Let and meet at point . Because , , , we get . Hence, and .
Denote . Hence, .
Denote by the circumradius of . In , following from the law of sines, .
Therefore, the area of the circumcircle of is ~Steven Chen (www.professorchenedu.com)
Video Solution (HOW TO THINK CREATIVELY!!!)
~Education, the Study of Everything
Video Solution by The Power of Logic
~math2718281828459
Video Solution
https://youtu.be/zq3UPu4nwsE?t=1674
Video Solution
https://youtu.be/DVuf-uXjfzY?t=211
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.