Difference between revisions of "2021 Fall AMC 10B Problems/Problem 7"

(Solution)
(Redirected.)
(Tag: New redirect)
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==Problem==
+
#REDIRECT [[2021_Fall_AMC_12B_Problems/Problem_5]]
 
 
Call a fraction <math>\frac{a}{b}</math>, not necessarily in the simplest form special if <math>a</math> and <math>b</math> are positive integers whose sum is <math>15</math>. How many distinct integers can be written as the sum of two, not necessarily different, special fractions?
 
 
 
<math>\textbf{(A)}\ 9 \qquad\textbf{(B)}\  10 \qquad\textbf{(C)}\  11 \qquad\textbf{(D)}\
 
12 \qquad\textbf{(E)}\ 13</math>
 
 
 
==Solution==
 
 
 
Listing out all special fractions, we get:
 
<math>\{\frac{1}{14}, \frac{2}{13}, \frac{3}{12}, \frac{4}{11}, \frac{5}{10}, \frac{6}{9}, \frac{7}{8}, \frac{8}{7}, \frac{9}{6}, \frac{10}{5}, \frac{11}{4}, \frac{12}{3}, \frac{13}{2}, \frac{14}{1}</math>}
 
 
 
Simplifying and grouping based on their denominators gives
 
 
 
<math>\{14, 4, 2</math>}<math>, \{\frac{1}{2}, \frac{3}{2}, \frac{13}{2}</math>}<math>, \{\frac{1}{4}, \frac{11}{4}</math>}
 
 
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=B|num-a=8|num-b=6}}
 
{{MAA Notice}}
 

Latest revision as of 04:26, 5 January 2022