|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2021_Fall_AMC_12B_Problems/Problem_1]] |
− | What is the value of <math>1234+2341+3412+4123?</math>
| |
− | | |
− | <math>(\textbf{A})\: 10{,}000\qquad(\textbf{B}) \: 10{,}010\qquad(\textbf{C}) \: 10{,}110\qquad(\textbf{D}) \: 11{,}000\qquad(\textbf{E}) \: 11{,}110</math>
| |
− | | |
− | == Solution 1 ==
| |
− | We see that <math>1, 2, 3,</math> and <math>4</math> each appear in the ones, tens, hundreds, and thousands digit exactly once. Since <math>1+2+3+4=10</math>, we find that the sum is equal to <cmath>10\cdot(1+10+100+1000)=\boxed{(\textbf{E})11,110}.</cmath>
| |
− | | |
− | | |
− | Note: it is equally valid to manually add all 4 numbers together to get the answer.
| |
− | | |
− | | |
− | ~kingofpineapplz
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2021 Fall|ab=A|before=First Problem|num-a=2}}
| |
− | {{MAA Notice}}
| |