|
|
(10 intermediate revisions by 2 users not shown) |
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2021_Fall_AMC_12A_Problems/Problem_6]] |
− | | |
− | As shown in the figure below, point <math>E</math> lies on the opposite half-plane determined by line <math>CD</math> from point <math>A</math> so that <math>\angle CDE = 110^\circ</math>. Point <math>F</math> lies on <math>\overline{AD}</math> so that <math>DE=DF</math>, and <math>ABCD</math> is a square. What is the degree measure of <math>\angle AFE</math>?
| |
− | | |
− | <asy>
| |
− | usepackage("mathptmx");
| |
− | size(6cm);
| |
− | pair A = (0,10);
| |
− | label("$A$", A, N);
| |
− | pair B = (0,0);
| |
− | label("$B$", B, S);
| |
− | pair C = (10,0);
| |
− | label("$C$", C, S);
| |
− | pair D = (10,10);
| |
− | label("$D$", D, SW);
| |
− | pair EE = (15,11.8);
| |
− | label("$E$", EE, N);
| |
− | pair F = (3,10);
| |
− | label("$F$", F, N);
| |
− | filldraw(D--arc(D,2.5,270,380)--cycle,lightgray);
| |
− | dot(A^^B^^C^^D^^EE^^F);
| |
− | draw(A--B--C--D--cycle);
| |
− | draw(D--EE--F--cycle);
| |
− | label("$110^\circ$", (15,9), SW);
| |
− | </asy>
| |
− | | |
− | <math>\textbf{(A) }160\qquad\textbf{(B) }164\qquad\textbf{(C) }166\qquad\textbf{(D) }170\qquad\textbf{(E) }174</math>
| |
− | | |
− | ==Solution==
| |
− | By angle subtraction, we have <math>\angle ADE = 360^\circ - \angle ADC - \angle CDE = 160^\circ.</math>
| |
− | | |
− | Note that <math>\triangle DEF</math> is isosceles, so <math>\angle EFD = \frac{180^\circ - \angle ADE}{2}=10^\circ.</math> Finally, we get <math>\angle AFE = 180^\circ - \angle EFD = \boxed{\textbf{(D) }170}</math> degrees.
| |
− | | |
− | ~MRENTHUSIASM
| |
− | | |
− | ==Solution 2 (same as Solution 1 but by another user)==
| |
− | Since <math>\angle CDE=110^\circ</math> and <math>\angle ADC=90^\circ,</math> we know that <math>\angle FDE=360^\circ-110^\circ-90^\circ=160^\circ.</math> From the given, <math>DE=DF,</math> so that means <math>\triangle DEF</math> is isosceles. So, <math>\angle EFD=\left(\frac{180-160}{2}\right)^\circ=10^\circ.</math> Hence, <math>\angle AFE=180^\circ-10^\circ=170^\circ</math> since it is supplementary to <math>\angle EFD.</math> This gives us answer choice <math>\boxed{\textbf{(D)}}.</math>
| |
− | | |
− | [[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]] ([[User talk:Aops-g5-gethsemanea2|talk]]) 18:56, 22 November 2021 (EST) | |
− | This solution conflicted with the above solution due to two people editing at the same time.
| |
− | | |
− | ==See Also==
| |
− | {{AMC10 box|year=2021 Fall|ab=A|num-b=6|num-a=8}}
| |
− | {{MAA Notice}}
| |