Difference between revisions of "2019 AIME II Problems/Problem 7"
MRENTHUSIASM (talk | contribs) (→Diagram: Converted diagram to asy.) |
m (→Solution 4 (Way too short)) |
||
(17 intermediate revisions by 4 users not shown) | |||
Line 44: | Line 44: | ||
label("$\ell_C$",L+9/8*(K-L),1.5*dir(A--B)); | label("$\ell_C$",L+9/8*(K-L),1.5*dir(A--B)); | ||
</asy> | </asy> | ||
− | ~MRENTHUSIASM | + | ~MRENTHUSIASM |
==Solution 1== | ==Solution 1== | ||
Line 74: | Line 74: | ||
~ Nafer | ~ Nafer | ||
+ | |||
+ | ==Solution 3== | ||
+ | [[File:2019 AIME II 7.png|450px|right]] | ||
+ | Notation shown on diagram. By similar triangles we have | ||
+ | <cmath>k_1 = \frac{EF}{BC} = \frac{AE}{AB} = \frac {AF}{AC} = \frac {1}{4},</cmath> | ||
+ | <cmath>k_2 = \frac{F''E''}{AC} = \frac {BF''}{AB} = \frac{1}{4},</cmath> | ||
+ | <cmath>k_3 = \frac{E'F'}{AB} = \frac{E'C }{AC} = \frac{1}{8}.</cmath> | ||
+ | So, <cmath>\frac{ZE}{BC} = \frac{F''E}{AB} = \frac{AB - AE - BF''}{AB} = 1 - k_1 - k_2,</cmath> | ||
+ | <cmath>\frac{FY}{BC} = \frac{FE'}{AC} = \frac{AC - AF - CE'}{AC} = 1 - k_1 - k_3.</cmath> | ||
+ | <cmath>k = \frac{ZY}{BC} = \frac{ZE + EF + FY}{BC} = (1 - k_1 - k_2) + k_1 + (1 - k_1 - k_3)</cmath> | ||
+ | <cmath>k = 2 - k_1 - k_2 - k_3 = 2 - \frac{1}{4} - \frac{1}{4} - \frac{1}{8} = \frac{11}{8}.</cmath> | ||
+ | <cmath>\frac{ZY+YX +XZ}{BC +AB + AC} = k \implies ZY + YX + XZ =\frac{11}{8} (220 + 120 + 180) = \boxed {715}.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Solution 4 (''Way'' too short, just keep track of which side is which)== | ||
+ | |||
+ | <asy> | ||
+ | pair A,B,C; | ||
+ | B = (0,0); | ||
+ | C = (1,0); | ||
+ | A = intersectionpoints(circle(B,3/2),circle(C,11/6))[0]; | ||
+ | draw(A--B--C--cycle); | ||
+ | draw((3/2,3/4)--(5/2,3/4)); | ||
+ | draw((3/2,1/4)--(5/2,1/4)); | ||
+ | draw((9/4,1)--(11/4,1/2)--(9/4,0)); | ||
+ | draw(shift(dir(0)*13/4)*shift(dir(30))*polygon(3)); | ||
+ | </asy> | ||
+ | |||
+ | <asy> | ||
+ | for (int i=0; i<8; ++i) | ||
+ | { | ||
+ | for (int j=0; j<i+1; ++j) | ||
+ | { | ||
+ | draw(shift(dir(30))*shift(dir(0)*i*sqrt(3))*shift(dir(120)*j*sqrt(3))*polygon(3)); | ||
+ | } | ||
+ | } | ||
+ | pair A = origin+2*sqrt(3)*dir(0)+7*sqrt(3)*dir(120); | ||
+ | pair B = origin+13*sqrt(3)*dir(0)+7*sqrt(3)*dir(120); | ||
+ | pair C = origin+2*sqrt(3)*dir(0)-4*sqrt(3)*dir(120); | ||
+ | pair D = origin + 2*sqrt(3)*dir(0); | ||
+ | pair E = origin + 2*sqrt(3)*dir(60); | ||
+ | pair F = origin + 7*sqrt(3)*dir(60); | ||
+ | pair G = origin + 7*sqrt(3)*dir(60) + 1*sqrt(3)*dir(0); | ||
+ | pair H = origin + 6*sqrt(3)*dir(0) + 2*sqrt(3)*dir(60); | ||
+ | pair I = origin + 6*sqrt(3)*dir(0); | ||
+ | draw(A--B--C--cycle,linewidth(3)); | ||
+ | draw(D--E,linewidth(3)+rgb(3/4,1/4,1/4)); | ||
+ | draw(F--G,linewidth(3)+rgb(1/4,3/4,1/4)); | ||
+ | draw(H--I,linewidth(3)+rgb(1/4,1/4,3/4)); | ||
+ | </asy> | ||
+ | |||
+ | Let's squish a triangle with side lengths 15, 22.5, and 27.5 into a equilateral triangle with side length 1. Then, the original triangle gets turned into a equilateral triangle with side length 8. Since 15 is one eighth of 120, it has a length of one. Since 45 and 55 are one fourth of 180 and 220 respectively, they are both two long. We extend the three segments to form a big equilateral triangle shown in black. Notice it has a side length of 11. Now that our task is done, let's undo the distortion. We get 11(15+22.5+27.5)=11(65)=715. | ||
+ | |||
+ | ~ [[User:Afly|Afly]] ([[User talk:Afly|talk]]) | ||
==See Also== | ==See Also== |
Latest revision as of 13:58, 14 January 2024
Contents
Problem
Triangle has side lengths , and . Lines , and are drawn parallel to , and , respectively, such that the intersections of , and with the interior of are segments of lengths , and , respectively. Find the perimeter of the triangle whose sides lie on lines , and .
Diagram
~MRENTHUSIASM
Solution 1
Let the points of intersection of with divide the sides into consecutive segments . Furthermore, let the desired triangle be , with closest to side , closest to side , and closest to side . Hence, the desired perimeter is since , , and .
Note that , so using similar triangle ratios, we find that , , , and .
We also notice that and . Using similar triangles, we get that Hence, the desired perimeter is -ktong
Solution 2
Let the diagram be set up like that in Solution 1.
By similar triangles we have Thus
Since and , the altitude of from is half the altitude of from , say . Also since , the distance from to is . Therefore the altitude of from is .
By triangle scaling, the perimeter of is of that of , or
~ Nafer
Solution 3
Notation shown on diagram. By similar triangles we have So, vladimir.shelomovskii@gmail.com, vvsss
Solution 4 (Way too short, just keep track of which side is which)
Let's squish a triangle with side lengths 15, 22.5, and 27.5 into a equilateral triangle with side length 1. Then, the original triangle gets turned into a equilateral triangle with side length 8. Since 15 is one eighth of 120, it has a length of one. Since 45 and 55 are one fourth of 180 and 220 respectively, they are both two long. We extend the three segments to form a big equilateral triangle shown in black. Notice it has a side length of 11. Now that our task is done, let's undo the distortion. We get 11(15+22.5+27.5)=11(65)=715.
See Also
2019 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.