Difference between revisions of "2018 AMC 12B Problems/Problem 13"

m (Solution 1 (Similar Triangles and Area Ratios))
m
 
(18 intermediate revisions by 4 users not shown)
Line 24: Line 24:
 
<math>\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}</math>
 
<math>\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}</math>
  
==Solution 1 (Similar Triangles and Area Ratios)==
+
==Solution 1 (Similar Triangles)==
 
As shown below, let <math>M_1,M_2,M_3,M_4</math> be the midpoints of <math>\overline{AB},\overline{BC},\overline{CD},\overline{DA},</math> respectively, and <math>G_1,G_2,G_3,G_4</math> be the centroids of <math>\triangle{ABP},\triangle{BCP},\triangle{CDP},\triangle{DAP},</math> respectively.
 
As shown below, let <math>M_1,M_2,M_3,M_4</math> be the midpoints of <math>\overline{AB},\overline{BC},\overline{CD},\overline{DA},</math> respectively, and <math>G_1,G_2,G_3,G_4</math> be the centroids of <math>\triangle{ABP},\triangle{BCP},\triangle{CDP},\triangle{DAP},</math> respectively.
 
<asy>
 
<asy>
 +
/* Made by MRENTHUSIASM */
 
unitsize(210);
 
unitsize(210);
 
pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3);
 
pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3);
Line 74: Line 75:
 
dot(G4);
 
dot(G4);
 
</asy>
 
</asy>
By SAS, we conclude that <math>\triangle G_1G_2P\sim\triangle M_1M_2P, \triangle G_2G_3P\sim\triangle M_2M_3P, \triangle G_3G_4P\sim\triangle M_3M_4P,</math> and <math>\triangle G_4G_1P\sim\triangle M_4M_1P.</math> By the properties of centroids, the side-length ratio for each pair of triangles is <math>\frac23.</math>
+
By SAS, we conclude that <math>\triangle G_1G_2P\sim\triangle M_1M_2P, \triangle G_2G_3P\sim\triangle M_2M_3P, \triangle G_3G_4P\sim\triangle M_3M_4P,</math> and <math>\triangle G_4G_1P\sim\triangle M_4M_1P.</math> By the properties of centroids, the ratio of similitude for each pair of triangles is <math>\frac{2}{3}.</math>
  
 
Note that quadrilateral <math>M_1M_2M_3M_4</math> is a square of side-length <math>15\sqrt2.</math> It follows that:
 
Note that quadrilateral <math>M_1M_2M_3M_4</math> is a square of side-length <math>15\sqrt2.</math> It follows that:
 
<ol style="margin-left: 1.5em;">
 
<ol style="margin-left: 1.5em;">
   <li>By angle addition, we have
+
   <li>Since <math>\overline{G_1G_2}\parallel\overline{M_1M_2},\overline{G_2G_3}\parallel\overline{M_2M_3},\overline{G_3G_4}\parallel\overline{M_3M_4},</math> and <math>\overline{G_4G_1}\parallel\overline{M_4M_1}</math> by the Converse of the Corresponding Angles Postulate, we have <math>\angle G_1G_2G_3=\angle G_2G_3G_4=\angle G_3G_4G_1=\angle G_4G_1G_2=90^\circ.</math></li><p>
<cmath>\begin{align*}
+
   <li>Since <math>G_1G_2=\frac23M_1M_2, G_2G_3=\frac23M_2M_3, G_3G_4=\frac23M_3M_4,</math> and <math>G_4G_1=\frac23M_4M_1</math> by the ratio of similitude, we have <math>G_1G_2=G_2G_3=G_3G_4=G_4G_1=10\sqrt2.</math></li><p>
\angle G_1G_2G_3 &= \angle G_1G_2P + \angle PG_2G_3 \\
 
&= \angle M_1M_2P + \angle PM_2M_3 \\
 
&= \angle M_1M_2M_3 \\
 
&= 90^\circ.
 
\end{align*}</cmath>
 
Similarly, we deduce that <math>\angle G_2G_3G_4 = \angle G_3G_4G_1 = \angle G_4G_1G_2 = 90^\circ.</math>
 
</li><p>
 
   <li>Since <math>G_1G_2=\frac23M_1M_2, G_2G_3=\frac23M_2M_3, G_3G_4=\frac23M_3M_4,</math> and <math>G_4G_1=\frac23M_4M_1,</math> we have <math>G_1G_2=G_2G_3=G_3G_4=G_4G_1=10\sqrt2.</math></li><p>
 
 
</ol>
 
</ol>
 
Together, quadrilateral <math>G_1G_2G_3G_4</math> is a square of side-length <math>10\sqrt2,</math> so its area is <math>\left(10\sqrt2\right)^2=\boxed{\textbf{(C) }200}.</math>
 
Together, quadrilateral <math>G_1G_2G_3G_4</math> is a square of side-length <math>10\sqrt2,</math> so its area is <math>\left(10\sqrt2\right)^2=\boxed{\textbf{(C) }200}.</math>
  
<b>Remark</b>
+
<u><b>Remark</b></u>
  
 
This solution shows that, if point <math>P</math> is within square <math>ABCD,</math> then the shape and the area of quadrilateral <math>G_1G_2G_3G_4</math> are independent of the location of <math>P.</math> Let the brackets denote areas. More generally, <math>G_1G_2G_3G_4</math> is always a square of area <cmath>[G_1G_2G_3G_4]=\left(\frac23\right)^2[M_1M_2M_3M_4]=\frac49[M_1M_2M_3M_4]=\frac29[ABCD].</cmath> On the other hand, the location of <math>G_1G_2G_3G_4</math> is dependent on the location of <math>P.</math>
 
This solution shows that, if point <math>P</math> is within square <math>ABCD,</math> then the shape and the area of quadrilateral <math>G_1G_2G_3G_4</math> are independent of the location of <math>P.</math> Let the brackets denote areas. More generally, <math>G_1G_2G_3G_4</math> is always a square of area <cmath>[G_1G_2G_3G_4]=\left(\frac23\right)^2[M_1M_2M_3M_4]=\frac49[M_1M_2M_3M_4]=\frac29[ABCD].</cmath> On the other hand, the location of <math>G_1G_2G_3G_4</math> is dependent on the location of <math>P.</math>
Line 97: Line 90:
 
~RandomPieKevin ~Kyriegon ~MRENTHUSIASM
 
~RandomPieKevin ~Kyriegon ~MRENTHUSIASM
  
==Solution 2 (Coordinate Geometry)==
+
==Solution 2 (Similar Triangles)==
We put the diagram on a coordinate plane. The coordinates of the square are <math>(0,0),(30,0),(30,30),(0,30)</math> and the coordinates of point P are <math>(x,y).</math> By using the centroid formula, we find that the coordinates of the centroids are <math>\left(\frac{x}{3},10+\frac{y}{3}\right),\left(10+\frac{x}{3},\frac{y}{3}\right),\left(20+\frac{x}{3},10+\frac{y}{3}\right),</math> and <math>\left(10+\frac{x}{3},20+\frac{y}{3}\right).</math> Shifting the coordinates down by <math>\left(\frac x3,\frac y3\right)</math>does not change its area, and we ultimately get that the area is equal to the area covered by <math>(0,10),(10,0),(20,10),(10,20)</math> which has an area of <math>\boxed{\textbf{(C) }200}.</math>
+
This solution refers to the diagram in Solution 1.
  
==Solution 3 (Accurate Diagram)==
+
By SAS, we conclude that <math>\triangle G_1G_3P\sim\triangle M_1M_3P</math> and <math>\triangle G_2G_4P\sim\triangle M_2M_4P.</math> By the properties of centroids, the ratio of similitude for each pair of triangles is <math>\frac23.</math>
We can draw an accurate diagram by using centimeters and scaling everything down by a factor of <math>2.</math> The centroid is the intersection of the three medians in a triangle.  
 
  
After connecting the <math>4</math> centroids, we see that the quadrilateral looks like a square with side length of <math>7.</math> However, we scaled everything down by a factor of <math>2,</math> so the length is <math>14.</math> The area of a square is <math>s^2,</math> so the area is <math>\boxed{\textbf{(C) }200}.</math>
+
Note that quadrilateral <math>M_1M_2M_3M_4</math> is a square of diagonal-length <math>30,</math> so <math>\overline{M_1M_3}\perp\overline{M_2M_4}.</math> Since <math>\overline{G_1G_3}\parallel\overline{M_1M_3}</math> and <math>\overline{G_2G_4}\parallel\overline{M_2M_4}</math> by the Converse of the Corresponding Angles Postulate, we have <math>\overline{G_1G_3}\perp\overline{G_2G_4}.</math>
 +
 
 +
Therefore, the area of quadrilateral <math>G_1G_2G_3G_4</math> is <cmath>\frac12\cdot G_1G_3\cdot G_2G_4 = \frac12\cdot\left(\frac23\cdot M_1M_3\right)\cdot\left(\frac23\cdot M_2M_4\right)=\boxed{\textbf{(C) }200}.</cmath>
 +
~Funnybunny5246 ~MRENTHUSIASM
 +
 
 +
==Solution 3 (Coordinate Geometry)==
 +
This solution refers to the diagram in Solution 1.
 +
 
 +
We place the diagram in the coordinate plane: Let <math>A=(0,30),B=(0,0),C=(30,0),D=(30,30),</math> and <math>P=(3x,3y).</math>
 +
 
 +
Recall that for any triangle in the coordinate plane, the coordinates of its centroid are the averages of the coordinates of its vertices. It follows that <math>G_1=(x,y+10),G_2=(x+10,y),G_3=(x+20,y+10),</math> and <math>G_4=(x+10,y+20).</math>
 +
 
 +
Note that <math>G_1G_3=G_2G_4=20</math> and <math>\overline{G_1G_3}\perp\overline{G_2G_4}.</math> Therefore, the area of quadrilateral <math>G_1G_2G_3G_4</math> is <cmath>\frac12\cdot G_1G_3\cdot G_2G_4=\boxed{\textbf{(C) }200}.</cmath>
 +
 
 +
~Pi31415926535897 ~MRENTHUSIASM
 +
 
 +
==Solution 4 (Homothety)==
 +
 
 +
Let <math>X,Y,Z,W</math> be the midpoints of sides <math>AB,BC,CD,DE</math>, respectively.
 +
 
 +
Notice that a homothety centered at P with ratio <math>\frac{2}{3}</math> will send <math>XYZW</math> to <math>G_{1}G_{2}G_{3}G_{4}</math>, so <math>G_{1}G_{2}G_{3}G_{4}</math> is a square with area <math>\left(\frac{2}{3}\right)^2 [XYZW]</math>, but <math>[XYZW]=\frac{1}{2}[ABCD]</math> so our desired area is <cmath>\frac{4}{9}\cdot\frac{1}{2}\cdot900=\boxed{\textbf{(C) }200}</cmath>
 +
 
 +
~chrisdiamond10
  
 
== Video Solution (Meta-Solving Technique) ==
 
== Video Solution (Meta-Solving Technique) ==

Latest revision as of 05:53, 31 August 2024

Problem

Square $ABCD$ has side length $30$. Point $P$ lies inside the square so that $AP = 12$ and $BP = 26$. The centroids of $\triangle{ABP}$, $\triangle{BCP}$, $\triangle{CDP}$, and $\triangle{DAP}$ are the vertices of a convex quadrilateral. What is the area of that quadrilateral?

[asy] unitsize(120); pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3); draw(A--B--C--D--cycle); dot(P); defaultpen(fontsize(10pt)); draw(A--P--B); draw(C--P--D); label("$A$", A, W); label("$B$", B, W); label("$C$", C, E); label("$D$", D, E); label("$P$", P, N*1.5+E*0.5); dot(A); dot(B); dot(C); dot(D); [/asy]

$\textbf{(A) }100\sqrt{2}\qquad\textbf{(B) }100\sqrt{3}\qquad\textbf{(C) }200\qquad\textbf{(D) }200\sqrt{2}\qquad\textbf{(E) }200\sqrt{3}$

Solution 1 (Similar Triangles)

As shown below, let $M_1,M_2,M_3,M_4$ be the midpoints of $\overline{AB},\overline{BC},\overline{CD},\overline{DA},$ respectively, and $G_1,G_2,G_3,G_4$ be the centroids of $\triangle{ABP},\triangle{BCP},\triangle{CDP},\triangle{DAP},$ respectively. [asy] /* Made by MRENTHUSIASM */ unitsize(210); pair B = (0, 0), A = (0, 1), D = (1, 1), C = (1, 0), P = (1/4, 2/3); pair M1 = midpoint(A--B); pair M2 = midpoint(B--C); pair M3 = midpoint(C--D); pair M4 = midpoint(D--A); pair G1 = centroid(A,B,P); pair G2 = centroid(B,C,P); pair G3 = centroid(C,D,P); pair G4 = centroid(D,A,P); filldraw(M1--M2--P--cycle,red); filldraw(M2--M3--P--cycle,yellow); filldraw(M3--M4--P--cycle,green); filldraw(M4--M1--P--cycle,lightblue); draw(A--B--C--D--cycle); draw(M1--M2--M3--M4--cycle); draw(G1--G2--G3--G4--cycle); dot(P); defaultpen(fontsize(10pt)); draw(A--P--B); draw(C--P--D); label("$A$", A, W); label("$B$", B, W); label("$C$", C, E); label("$D$", D, E); label("$P$", P, N); label("$M_1$", M1, W); label("$M_2$", M2, S); label("$M_3$", M3, E); label("$M_4$", M4, N); label("$G_1$", G1, 1.5S); label("$G_2$", G2, 1.5E); label("$G_3$", G3, 1.5NE); label("$G_4$", G4, 1.5E); dot(A); dot(B); dot(C); dot(D); dot(M1); dot(M2); dot(M3); dot(M4); dot(G1); dot(G2); dot(G3); dot(G4); [/asy] By SAS, we conclude that $\triangle G_1G_2P\sim\triangle M_1M_2P, \triangle G_2G_3P\sim\triangle M_2M_3P, \triangle G_3G_4P\sim\triangle M_3M_4P,$ and $\triangle G_4G_1P\sim\triangle M_4M_1P.$ By the properties of centroids, the ratio of similitude for each pair of triangles is $\frac{2}{3}.$

Note that quadrilateral $M_1M_2M_3M_4$ is a square of side-length $15\sqrt2.$ It follows that:

  1. Since $\overline{G_1G_2}\parallel\overline{M_1M_2},\overline{G_2G_3}\parallel\overline{M_2M_3},\overline{G_3G_4}\parallel\overline{M_3M_4},$ and $\overline{G_4G_1}\parallel\overline{M_4M_1}$ by the Converse of the Corresponding Angles Postulate, we have $\angle G_1G_2G_3=\angle G_2G_3G_4=\angle G_3G_4G_1=\angle G_4G_1G_2=90^\circ.$
  2. Since $G_1G_2=\frac23M_1M_2, G_2G_3=\frac23M_2M_3, G_3G_4=\frac23M_3M_4,$ and $G_4G_1=\frac23M_4M_1$ by the ratio of similitude, we have $G_1G_2=G_2G_3=G_3G_4=G_4G_1=10\sqrt2.$

Together, quadrilateral $G_1G_2G_3G_4$ is a square of side-length $10\sqrt2,$ so its area is $\left(10\sqrt2\right)^2=\boxed{\textbf{(C) }200}.$

Remark

This solution shows that, if point $P$ is within square $ABCD,$ then the shape and the area of quadrilateral $G_1G_2G_3G_4$ are independent of the location of $P.$ Let the brackets denote areas. More generally, $G_1G_2G_3G_4$ is always a square of area \[[G_1G_2G_3G_4]=\left(\frac23\right)^2[M_1M_2M_3M_4]=\frac49[M_1M_2M_3M_4]=\frac29[ABCD].\] On the other hand, the location of $G_1G_2G_3G_4$ is dependent on the location of $P.$

~RandomPieKevin ~Kyriegon ~MRENTHUSIASM

Solution 2 (Similar Triangles)

This solution refers to the diagram in Solution 1.

By SAS, we conclude that $\triangle G_1G_3P\sim\triangle M_1M_3P$ and $\triangle G_2G_4P\sim\triangle M_2M_4P.$ By the properties of centroids, the ratio of similitude for each pair of triangles is $\frac23.$

Note that quadrilateral $M_1M_2M_3M_4$ is a square of diagonal-length $30,$ so $\overline{M_1M_3}\perp\overline{M_2M_4}.$ Since $\overline{G_1G_3}\parallel\overline{M_1M_3}$ and $\overline{G_2G_4}\parallel\overline{M_2M_4}$ by the Converse of the Corresponding Angles Postulate, we have $\overline{G_1G_3}\perp\overline{G_2G_4}.$

Therefore, the area of quadrilateral $G_1G_2G_3G_4$ is \[\frac12\cdot G_1G_3\cdot G_2G_4 = \frac12\cdot\left(\frac23\cdot M_1M_3\right)\cdot\left(\frac23\cdot M_2M_4\right)=\boxed{\textbf{(C) }200}.\] ~Funnybunny5246 ~MRENTHUSIASM

Solution 3 (Coordinate Geometry)

This solution refers to the diagram in Solution 1.

We place the diagram in the coordinate plane: Let $A=(0,30),B=(0,0),C=(30,0),D=(30,30),$ and $P=(3x,3y).$

Recall that for any triangle in the coordinate plane, the coordinates of its centroid are the averages of the coordinates of its vertices. It follows that $G_1=(x,y+10),G_2=(x+10,y),G_3=(x+20,y+10),$ and $G_4=(x+10,y+20).$

Note that $G_1G_3=G_2G_4=20$ and $\overline{G_1G_3}\perp\overline{G_2G_4}.$ Therefore, the area of quadrilateral $G_1G_2G_3G_4$ is \[\frac12\cdot G_1G_3\cdot G_2G_4=\boxed{\textbf{(C) }200}.\]

~Pi31415926535897 ~MRENTHUSIASM

Solution 4 (Homothety)

Let $X,Y,Z,W$ be the midpoints of sides $AB,BC,CD,DE$, respectively.

Notice that a homothety centered at P with ratio $\frac{2}{3}$ will send $XYZW$ to $G_{1}G_{2}G_{3}G_{4}$, so $G_{1}G_{2}G_{3}G_{4}$ is a square with area $\left(\frac{2}{3}\right)^2 [XYZW]$, but $[XYZW]=\frac{1}{2}[ABCD]$ so our desired area is \[\frac{4}{9}\cdot\frac{1}{2}\cdot900=\boxed{\textbf{(C) }200}\]

~chrisdiamond10

Video Solution (Meta-Solving Technique)

https://youtu.be/GmUWIXXf_uk?t=1439

~ pi_is_3.14

See Also

2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png