Difference between revisions of "2006 AMC 10A Problems/Problem 17"
m (+ imgs) |
m (→Solution 6 (Educated guess)) |
||
(27 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In rectangle <math>ADEH</math>, points <math>B</math> and <math>C</math> trisect <math>\overline{AD}</math>, and points <math>G</math> and <math>F</math> trisect <math>\overline{HE}</math>. In addition, <math>AH=AC=2</math>. What is the area of quadrilateral <math>WXYZ</math> shown in the figure? | + | In rectangle <math>ADEH</math>, points <math>B</math> and <math>C</math> trisect <math>\overline{AD}</math>, and points <math>G</math> and <math>F</math> trisect <math>\overline{HE}</math>. In addition, <math>AH=AC=2</math>, and <math>AD=3</math>. What is the area of quadrilateral <math>WXYZ</math> shown in the figure? |
− | < | + | <asy> |
+ | size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); | ||
+ | pair A,B,C,D,E,F,G,H,W,X,Y,Z; | ||
+ | A=(0,2); B=(1,2); C=(2,2); D=(3,2); | ||
+ | H=(0,0); G=(1,0); F=(2,0); E=(3,0); | ||
+ | D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); | ||
+ | D(A--F); D(B--E); D(D--G); D(C--H); | ||
+ | Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); | ||
+ | D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); | ||
+ | D(A--D--E--H--cycle); | ||
+ | </asy> | ||
− | + | <math>\textbf{(A) } \frac{1}{2}\qquad\textbf{(B) } \frac{\sqrt{2}}{2}\qquad\textbf{(C) } \frac{\sqrt{3}}{2}\qquad\textbf{(D) } \sqrt{2} \qquad\textbf{(E) } \frac{2\sqrt{3}}{3}\qquad</math> | |
− | + | == Solution 1 == | |
− | + | By [[symmetry]], <math>WXYZ</math> is a square. | |
− | |||
− | |||
− | + | <asy> | |
+ | size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); | ||
+ | pair A,B,C,D,E,F,G,H,W,X,Y,Z; | ||
+ | A=(0,2); B=(1,2); C=(2,2); D=(3,2); | ||
+ | H=(0,0); G=(1,0); F=(2,0); E=(3,0); | ||
+ | D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); | ||
+ | D(A--F); D(B--E); D(D--G); D(C--H); | ||
+ | Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); | ||
+ | D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); | ||
+ | MP("1",(A+B)/2,2*N); MP("2",(A+H)/2,plain.W); D(B--Z); MP("1",(B+Z)/2,plain.W); MP("\frac{\sqrt{2}}{2}",(W+Z)/2,plain.SE); | ||
+ | D(A--D--E--H--cycle); | ||
+ | </asy> | ||
− | Draw <math>\overline{BZ}</math>. | + | Draw <math>\overline{BZ}</math>. <math>BZ = \frac 12AH = 1</math>, so <math>\triangle BWZ</math> is a <math>45-45-90 \triangle</math>. Hence <math>WZ = \frac{1}{\sqrt{2}}</math>, and <math>[WXYZ] = \left(\frac{1}{\sqrt{2}}\right)^2 =\boxed{\textbf{(A) }\frac 12}</math>. |
− | There are many different similar ways to come to the same conclusion using different 45-45-90 triangles. | + | There are many different similar ways to come to the same conclusion using different [[right triangle|45-45-90 triangles]]. |
=== Solution 2 === | === Solution 2 === | ||
− | + | <asy> | |
+ | size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); | ||
+ | pair A,B,C,D,E,F,G,H,W,X,Y,Z; | ||
+ | A=(0,2); B=(1,2); C=(2,2); D=(3,2); | ||
+ | H=(0,0); G=(1,0); F=(2,0); E=(3,0); | ||
+ | D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); | ||
+ | D(A--F); D(B--E); D(D--G); D(C--H); | ||
+ | Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); | ||
+ | D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); | ||
+ | D(B--D((A+H)/2)--G);D(C--D((E+D)/2)--F); | ||
+ | D(A--D--E--H--cycle); | ||
+ | </asy> | ||
− | + | Drawing lines as shown above and piecing together the triangles, we see that <math>ABCD</math> is made up of <math>12</math> squares congruent to <math>WXYZ</math>. Hence <math>[WXYZ] = \frac{2\cdot 3}{12} =\boxed{\textbf{(A) }\frac 12} </math>. | |
+ | |||
+ | === Solution 3 === | ||
+ | We see that if we draw a line to <math>BZ</math> it is half the width of the rectangle so that length would be <math>1</math>, and the resulting triangle is a <math>45-45-90</math> so using the [[Pythagorean Theorem]] we can get that each side is <math>\sqrt{\frac{1^2}{2}}</math> so the area of the middle square would be <math>(\sqrt{\frac{1^2}{2}})^2=(\sqrt{\frac{1}{2}})^2=\boxed{\textbf{(A) }\frac{1}{2}}</math> which is our answer. | ||
+ | |||
+ | === Solution 4 === | ||
+ | |||
+ | Since <math>B</math> and <math>C</math> are trisection points and <math>AC = 2</math>, we see that <math>AD = 3</math>. Also, <math>AC = AH</math>, so triangle <math>ACH</math> is a right isosceles triangle, i.e. <math>\angle ACH = \angle AHC = 45^\circ</math>. By symmetry, triangles <math>AFH</math>, <math>DEG</math>, and <math>BED</math> are also right isosceles triangles. Therefore, <math>\angle WAD = \angle WDA = 45^\circ</math>, which means triangle <math>AWD</math> is also a right isosceles triangle. Also, triangle <math>AXC</math> is a right isosceles triangle. | ||
+ | |||
+ | Then <math>AW = AD/\sqrt{2} = 3/\sqrt{2}</math>, and <math>AX = AC/\sqrt{2} = 2/\sqrt{2}</math>. Hence, <math>XW = AW - AX = 3/\sqrt{2} - 2/\sqrt{2} = 1/\sqrt{2}</math>. | ||
+ | |||
+ | By symmetry, quadrilateral <math>WXYZ</math> is a square, so its area is | ||
+ | <cmath>XW^2 = \left( \frac{1}{\sqrt{2}} \right)^2 = \boxed{\textbf{(A) }\frac{1}{2}}.</cmath> | ||
+ | |||
+ | ~made by AoPS (somewhere) -put here by qkddud~ | ||
+ | |||
+ | == Solution 5 (Proof Bash) == | ||
+ | |||
+ | <asy> | ||
+ | size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); | ||
+ | pair A,B,C,D,E,F,G,H,W,X,Y,Z; | ||
+ | A=(0,2); B=(1,2); C=(2,2); D=(3,2); | ||
+ | H=(0,0); G=(1,0); F=(2,0); E=(3,0); | ||
+ | D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); | ||
+ | D(A--F); D(B--E); D(D--G); D(C--H); | ||
+ | Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); | ||
+ | D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); | ||
+ | D(A--D--E--H--cycle); | ||
+ | </asy> | ||
+ | |||
+ | |||
+ | By symmetry, quadrilateral <math>WXYZ</math> is a square. | ||
+ | |||
+ | First step, proving that <math>\triangle BXD \sim \triangle BWC</math>. | ||
+ | |||
+ | We can tell quadrilateral <math>CDGH</math> is a parallelogram because <math>CD \parallel GH</math> and <math>CD \cong GH</math>. | ||
+ | |||
+ | By knowing that, we can say that <math>CW \parallel DX</math>. | ||
+ | |||
+ | Finally, we can now prove <math>\triangle BXD \sim \triangle BWC</math> by AA, with a ratio of 2:1. | ||
+ | |||
+ | Since <math>BD = DE = 2</math> and <math>\angle BDE = 90</math>. Then <math>\triangle BDE</math> is a 45-45-90 triangle. | ||
+ | |||
+ | This will make <math>\angle DBE = 45</math> making <math>\triangle BXD</math> and <math>\triangle BWC</math> a 45-45-90 triangle. | ||
+ | |||
+ | This will make, <math>BD = 2, BC=1, DX=BX=\sqrt 2, BW=WX=\frac{\sqrt 2}{2}</math>. Since <math>WX</math> is the length of the square, our answer will be <math>(\frac{\sqrt 2}{2})^2 = \frac{2}{4} = \boxed{\textbf{(A) }\frac{1}{2}}.</math> | ||
+ | |||
+ | ~ghfhgvghj10 | ||
+ | ==Solution 6 (Educated guess)== | ||
+ | Since we know that quadrilateral <math>WXYZ</math> is a square, we conclude that its area is a rational number because the side lengths may be irrational. Therefore, the answer is <math>\boxed{\textbf(A)}.</math> | ||
+ | ~elpianista227 | ||
+ | |||
+ | ==Video Solution by the Beauty of Math== | ||
+ | https://www.youtube.com/watch?v=GX33rxlJz7s | ||
+ | |||
+ | ~IceMatrix | ||
== See Also == | == See Also == | ||
Line 26: | Line 111: | ||
[[Category:Introductory Geometry Problems]] | [[Category:Introductory Geometry Problems]] | ||
+ | [[Category:Area Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 09:20, 4 November 2024
Contents
Problem
In rectangle , points and trisect , and points and trisect . In addition, , and . What is the area of quadrilateral shown in the figure?
Solution 1
By symmetry, is a square.
Draw . , so is a . Hence , and .
There are many different similar ways to come to the same conclusion using different 45-45-90 triangles.
Solution 2
Drawing lines as shown above and piecing together the triangles, we see that is made up of squares congruent to . Hence .
Solution 3
We see that if we draw a line to it is half the width of the rectangle so that length would be , and the resulting triangle is a so using the Pythagorean Theorem we can get that each side is so the area of the middle square would be which is our answer.
Solution 4
Since and are trisection points and , we see that . Also, , so triangle is a right isosceles triangle, i.e. . By symmetry, triangles , , and are also right isosceles triangles. Therefore, , which means triangle is also a right isosceles triangle. Also, triangle is a right isosceles triangle.
Then , and . Hence, .
By symmetry, quadrilateral is a square, so its area is
~made by AoPS (somewhere) -put here by qkddud~
Solution 5 (Proof Bash)
By symmetry, quadrilateral is a square.
First step, proving that .
We can tell quadrilateral is a parallelogram because and .
By knowing that, we can say that .
Finally, we can now prove by AA, with a ratio of 2:1.
Since and . Then is a 45-45-90 triangle.
This will make making and a 45-45-90 triangle.
This will make, . Since is the length of the square, our answer will be
~ghfhgvghj10
Solution 6 (Educated guess)
Since we know that quadrilateral is a square, we conclude that its area is a rational number because the side lengths may be irrational. Therefore, the answer is ~elpianista227
Video Solution by the Beauty of Math
https://www.youtube.com/watch?v=GX33rxlJz7s
~IceMatrix
See Also
2006 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.