Difference between revisions of "1978 AHSME Problems/Problem 20"

(See also)
 
(7 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
If <math>a,b,c</math> are non-zero real numbers such that <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> and <cmath>x=\frac{(a+b)(b+c)(c+a)}{abc},</cmath> and <math>x<0,</math> then <math>x</math> equals
 
If <math>a,b,c</math> are non-zero real numbers such that <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> and <cmath>x=\frac{(a+b)(b+c)(c+a)}{abc},</cmath> and <math>x<0,</math> then <math>x</math> equals
  
<math>\textbf{(A) }-1\qquad
+
<math>\textbf{(A) }{-}1\qquad
\textbf{(B) }-2\qquad
+
\textbf{(B) }{-}2\qquad
\textbf{(C) }-4\qquad
+
\textbf{(C) }{-}4\qquad
\textbf{(D) }-6\qquad  
+
\textbf{(D) }{-}6\qquad  
\textbf{(E) }-8    </math>  
+
\textbf{(E) }{-}8    </math>  
  
==Solution 2==
+
==Solution==
We equate the first two expressions (More generally, we can equate any two expressions): <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}.</cmath>
+
From the equation <cmath>\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},</cmath> we add <math>2</math> to each fraction to get <cmath>\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}.</cmath>
We add <math>1</math> to both sides, then rearrange:
+
We perform casework on <math>a+b+c:</math>
<cmath>\begin{align*}
 
\frac{a+b}{c} &= \frac{a+c}{b} \\
 
ab+b^2 &= ac+c^2 \\
 
\bigl(ab-ac\bigr)+\bigl(b^2-c^2\bigr) &= 0 \\
 
a(b-c)+(b+c)(b-c) &= 0 \\
 
(a+b+c)(b-c) &= 0,
 
\end{align*}</cmath>
 
from which <math>a+b+c=0</math> or <math>b=c.</math>
 
  
* If <math>a+b+c=0,</math> then <math>x=\frac{(-c)(-a)(-b)}{abc}=-1.</math>
+
* If <math>a+b+c\neq0,</math> then <math>a=b=c,</math> from which <math>x=\frac{(2a)(2a)(2a)}{a^3}=8.</math> However, this contradicts the precondition <math>x<0.</math>
  
* If <math>b=c,</math> then <math>x=\frac{(a+b)(b+c)(c+a)}{abc}</math>
+
* If <math>a+b+c=0,</math> then <math>x=\frac{(-c)(-a)(-b)}{abc}=\boxed{\textbf{(A) }{-}1}.</math>
  
~Pega969 (Solution)
+
~MRENTHUSIASM
 
 
~MRENTHUSIASM (Revision)
 
 
 
The second solution gives us <math>a=b=c</math>, and <math>x=\frac{8a^3}{a^3}=8</math>, which is not negative, so this solution doesn't work.
 
 
 
Therefore, <math>x=-1\Rightarrow\boxed{A}</math>.
 
 
 
<b>EDITING IN PROGRESS</b>
 
  
 
== See also ==
 
== See also ==
  
 
{{AHSME box|year=1978|n=I|num-b=19|num-a=21}}
 
{{AHSME box|year=1978|n=I|num-b=19|num-a=21}}
 +
[[Category:Introductory Algebra Problems]]
 +
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 11:24, 24 March 2024

Problem 20

If $a,b,c$ are non-zero real numbers such that \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] and \[x=\frac{(a+b)(b+c)(c+a)}{abc},\] and $x<0,$ then $x$ equals

$\textbf{(A) }{-}1\qquad \textbf{(B) }{-}2\qquad \textbf{(C) }{-}4\qquad \textbf{(D) }{-}6\qquad  \textbf{(E) }{-}8$

Solution

From the equation \[\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a},\] we add $2$ to each fraction to get \[\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}.\] We perform casework on $a+b+c:$

  • If $a+b+c\neq0,$ then $a=b=c,$ from which $x=\frac{(2a)(2a)(2a)}{a^3}=8.$ However, this contradicts the precondition $x<0.$
  • If $a+b+c=0,$ then $x=\frac{(-c)(-a)(-b)}{abc}=\boxed{\textbf{(A) }{-}1}.$

~MRENTHUSIASM

See also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png