Difference between revisions of "2018 AMC 10A Problems/Problem 8"
MRENTHUSIASM (talk | contribs) (About the rewrite the solution with three variables. I will LaTeX it.) |
(→Video Solutions) |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 13: | Line 13: | ||
x &= 6. | x &= 6. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | Joe has <math> | + | Joe has six <math>5</math>-cent coins, nine <math>10</math>-cent coins, and eight <math>25</math>-cent coins. Thus, our answer is |
<math>8-6 = \boxed{\textbf{(C) } 2}.</math> | <math>8-6 = \boxed{\textbf{(C) } 2}.</math> | ||
Line 36: | Line 36: | ||
==Solution 3 (Three Variables)== | ==Solution 3 (Three Variables)== | ||
+ | Let <math>n,d,</math> and <math>q</math> be the numbers of <math>5</math>-cent coins, <math>10</math>-cent coins, and <math>25</math>-cent coins in Joe's collection, respectively. We are given that | ||
+ | <cmath>\begin{align*} | ||
+ | n+d+q&=23, &(1) \\ | ||
+ | 5n+10d+25q&=320, &(2) \\ | ||
+ | d&=n+3. &(3) | ||
+ | \end{align*}</cmath> | ||
+ | Substituting <math>(3)</math> into each of <math>(1)</math> and <math>(2)</math> and then simplifying, we have | ||
+ | <cmath>\begin{align*} | ||
+ | 2n+q&=20, \hspace{17.5mm} &(1\star) \\ | ||
+ | 3n+5q&=58. &(2\star) | ||
+ | \end{align*}</cmath> | ||
+ | Subtracting <math>(2\star)</math> from <math>5\cdot(1\star)</math> gives <math>7n=42,</math> from which <math>n=6.</math> Substituting this into either <math>(1\star)</math> or <math>(2\star)</math> produces <math>q=8.</math> | ||
− | ==Video Solution== | + | Finally, the answer is <math>q-n=\boxed{\textbf{(C) } 2}.</math> |
+ | |||
+ | ~MRENTHUSIASM | ||
+ | |||
+ | ==Video Solution (HOW TO THINK CREATIVELY!)== | ||
+ | https://youtu.be/zbcnOfDJmQI | ||
+ | |||
+ | ~Education, the Study of Everything | ||
+ | |||
+ | |||
+ | |||
+ | ==Video Solutions== | ||
https://youtu.be/ZiZVIMmo260 | https://youtu.be/ZiZVIMmo260 | ||
+ | |||
https://youtu.be/BLTrtkVOZGE | https://youtu.be/BLTrtkVOZGE | ||
Line 44: | Line 68: | ||
~savannahsolver | ~savannahsolver | ||
− | == Video Solution == | + | ==Video Solution by OmegaLearn== |
https://youtu.be/HISL2-N5NVg?t=1861 | https://youtu.be/HISL2-N5NVg?t=1861 | ||
− | ~ pi_is_3.14 | + | ~pi_is_3.14 |
== See Also == | == See Also == |
Latest revision as of 14:14, 3 July 2023
Contents
Problem
Joe has a collection of coins, consisting of -cent coins, -cent coins, and -cent coins. He has more -cent coins than -cent coins, and the total value of his collection is cents. How many more -cent coins does Joe have than -cent coins?
Solution 1 (One Variable)
Let be the number of -cent coins that Joe has. Therefore, he must have -cent coins and -cent coins. Since the total value of his collection is cents, we can write Joe has six -cent coins, nine -cent coins, and eight -cent coins. Thus, our answer is
~Nivek
Solution 2 (Two Variables)
Let the number of -cent coins be the number of -cent coins be and the number of -cent coins be
Set up the following two equations with the information given in the problem:
From there, multiply the second equation by to get
Subtract the first equation from the multiplied second equation to get or
Substitute in for into one of the equations to get
Finally, the answer is
- mutinykids
Solution 3 (Three Variables)
Let and be the numbers of -cent coins, -cent coins, and -cent coins in Joe's collection, respectively. We are given that Substituting into each of and and then simplifying, we have Subtracting from gives from which Substituting this into either or produces
Finally, the answer is
~MRENTHUSIASM
Video Solution (HOW TO THINK CREATIVELY!)
~Education, the Study of Everything
Video Solutions
~savannahsolver
Video Solution by OmegaLearn
https://youtu.be/HISL2-N5NVg?t=1861
~pi_is_3.14
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.