Difference between revisions of "2004 AMC 10A Problems/Problem 10"

m (See Also)
(Problem)
 
(8 intermediate revisions by 7 users not shown)
Line 2: Line 2:
 
Coin <math>A</math> is flipped three times and coin <math>B</math> is flipped four times.  What is the probability that the number of heads obtained from flipping the two fair coins is the same?
 
Coin <math>A</math> is flipped three times and coin <math>B</math> is flipped four times.  What is the probability that the number of heads obtained from flipping the two fair coins is the same?
  
<math> \mathrm{(A) \ } \frac{29}{128} \qquad \mathrm{(B) \ } \frac{23}{128} \qquad \mathrm{(C) \ } \frac14 \qquad \mathrm{(D) \ } \frac{35}{128} \qquad \mathrm{(E) \ } \frac12  </math>
+
<math> \mathrm{(A) \ } \frac{19}{128} \qquad \mathrm{(B) \ } \frac{23}{128} \qquad \mathrm{(C) \ } \frac14 \qquad \mathrm{(D) \ } \frac{35}{128} \qquad \mathrm{(E) \ } \frac12  </math>
  
 
==Solution==
 
==Solution==
There are 4 ways that the same number of heads will be obtained; 0, 1, 2, or 3 heads.
+
There are <math>4</math> ways that the same number of heads will be obtained; <math>0</math>, <math>1</math>, <math>2</math>, or <math>3</math> heads.
  
The probability of both getting 0 heads is <math>\left(\frac12\right)^3{3\choose0}\left(\frac12\right)^4{4\choose0}=\frac1{128}</math>.
+
The probability of both getting <math>0</math> heads is <math>\left(\frac12\right)^3{3\choose0}\left(\frac12\right)^4{4\choose0}=\frac1{128}</math>
  
The probability of both getting 1 head is
+
The probability of both getting <math>1</math> head is
 
<math>\left(\frac12\right)^3{3\choose1}\left(\frac12\right)^4{4\choose1}=\frac{12}{128}</math>
 
<math>\left(\frac12\right)^3{3\choose1}\left(\frac12\right)^4{4\choose1}=\frac{12}{128}</math>
  
The probability of both getting 2 heads is
+
The probability of both getting <math>2</math> heads is
 
<math>\left(\frac12\right)^3{3\choose2}\left(\frac12\right)^4{4\choose2}=\frac{18}{128}</math>
 
<math>\left(\frac12\right)^3{3\choose2}\left(\frac12\right)^4{4\choose2}=\frac{18}{128}</math>
  
The probability of both getting 3 heads is
+
The probability of both getting <math>3</math> heads is
 
<math>\left(\frac12\right)^3{3\choose3}\left(\frac12\right)^4{4\choose3}=\frac{4}{128}</math>
 
<math>\left(\frac12\right)^3{3\choose3}\left(\frac12\right)^4{4\choose3}=\frac{4}{128}</math>
  
 
Therefore, the probabiliy of flipping the same number of heads is:
 
Therefore, the probabiliy of flipping the same number of heads is:
<math>\frac{1+12+18+4}{128}=\frac{35}{128}\Rightarrow\mathrm{(D)}</math>
+
<math>\frac{1+12+18+4}{128}=\frac{35}{128}\Rightarrow\boxed{\mathrm{(D)}\ \frac{35}{128}}</math>
 +
 
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/IRyWOZQMTV8?t=1518
 +
 
 +
~ pi_is_3.14
 +
 
 +
==Video Solution==
 +
https://youtu.be/bq34-DyUpEU
 +
 
 +
Education, the Study of Everything
  
 
== See also ==
 
== See also ==
Line 25: Line 35:
  
 
[[Category:Introductory Combinatorics Problems]]
 
[[Category:Introductory Combinatorics Problems]]
 +
{{MAA Notice}}

Latest revision as of 20:49, 15 April 2024

Problem

Coin $A$ is flipped three times and coin $B$ is flipped four times. What is the probability that the number of heads obtained from flipping the two fair coins is the same?

$\mathrm{(A) \ } \frac{19}{128} \qquad \mathrm{(B) \ } \frac{23}{128} \qquad \mathrm{(C) \ } \frac14 \qquad \mathrm{(D) \ } \frac{35}{128} \qquad \mathrm{(E) \ } \frac12$

Solution

There are $4$ ways that the same number of heads will be obtained; $0$, $1$, $2$, or $3$ heads.

The probability of both getting $0$ heads is $\left(\frac12\right)^3{3\choose0}\left(\frac12\right)^4{4\choose0}=\frac1{128}$

The probability of both getting $1$ head is $\left(\frac12\right)^3{3\choose1}\left(\frac12\right)^4{4\choose1}=\frac{12}{128}$

The probability of both getting $2$ heads is $\left(\frac12\right)^3{3\choose2}\left(\frac12\right)^4{4\choose2}=\frac{18}{128}$

The probability of both getting $3$ heads is $\left(\frac12\right)^3{3\choose3}\left(\frac12\right)^4{4\choose3}=\frac{4}{128}$

Therefore, the probabiliy of flipping the same number of heads is: $\frac{1+12+18+4}{128}=\frac{35}{128}\Rightarrow\boxed{\mathrm{(D)}\ \frac{35}{128}}$

Video Solution by OmegaLearn

https://youtu.be/IRyWOZQMTV8?t=1518

~ pi_is_3.14

Video Solution

https://youtu.be/bq34-DyUpEU

Education, the Study of Everything

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png