Difference between revisions of "2013 AMC 12B Problems/Problem 17"
(→Solution 3) |
m (→Solution 1) |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 12: | Line 12: | ||
==Solution 1== | ==Solution 1== | ||
− | <math>a+b= 2-c</math>. Now, by [[Cauchy-Schwarz]], we have that <math>(a^2+b^2) \ge \frac{(2-c)^2}{2}</math>. Therefore, we have that <math>\frac{(2-c)^2}{2}+c^2 \le 12</math>. We then find the roots of <math>c</math> that satisfy equality and find the difference of the roots. This gives the answer, <math>\boxed{\textbf{(D)} \ \frac{16}{3}}</math>. | + | Note that <math>a+b= 2-c</math>. Now, by [[Cauchy-Schwarz]], we have that <math>(a^2+b^2) \ge \frac{(2-c)^2}{2}</math>. Therefore, we have that <math>\frac{(2-c)^2}{2}+c^2 \le 12</math>. We then find the roots of <math>c</math> that satisfy equality and find the difference of the roots. This gives the answer, <math>\boxed{\textbf{(D)} \ \frac{16}{3}}</math>. |
− | Note: We arrived at <math>(a^2+b^2) \ge \frac{(2-c)^2}{2}</math> as we consider the two sets of numbers <math>(a,b)</math> and <math>(1,1)</math>. From [[Cauchy-Schwarz]], we have that <math>(a^2+b^2)(1^2+1^2) \ge (2 | + | Note: We arrived at <math>(a^2+b^2) \ge \frac{(2-c)^2}{2}</math> as we consider the two sets of numbers <math>(a,b)</math> and <math>(1,1)</math>. From [[Cauchy-Schwarz]], we have that <math>(a^2+b^2)(1^2+1^2) \ge (2\cdot 1 -c\cdot 1)^2</math>. <math>a+b = 2-c</math> which is how we got the second part of the inequality. |
+ | |||
+ | ~minor edit by [[User:Yiyj1|Yiyj1]] | ||
==Solution 2== | ==Solution 2== | ||
Line 21: | Line 23: | ||
The difference between these two values is <math>\boxed{\textbf{(D)} \ \frac{16}{3}}</math>. | The difference between these two values is <math>\boxed{\textbf{(D)} \ \frac{16}{3}}</math>. | ||
− | ==Solution 3 (no Cauchy-Schwarz)== | + | ==Solution 3 (no [[Cauchy-Schwarz]])== |
Line 32: | Line 34: | ||
Now <math>a=b=2</math> and <math>c=-2</math> satisfy both equations, so we see that <math>c=-2</math> must be the minimum possible value of <math>c</math>. Also, <math>c=\frac{10}{3}</math> and <math>a=b=-\frac{2}{3}</math> satisfy both equations, so we see that <math>c=\frac{10}{3}</math> is the maximum possible value of <math>c</math>. The difference between these is <math>\frac{10}{3}-(-2)=\frac{16}{3}</math>, or <math>\boxed{\textbf{(D)}}</math>. | Now <math>a=b=2</math> and <math>c=-2</math> satisfy both equations, so we see that <math>c=-2</math> must be the minimum possible value of <math>c</math>. Also, <math>c=\frac{10}{3}</math> and <math>a=b=-\frac{2}{3}</math> satisfy both equations, so we see that <math>c=\frac{10}{3}</math> is the maximum possible value of <math>c</math>. The difference between these is <math>\frac{10}{3}-(-2)=\frac{16}{3}</math>, or <math>\boxed{\textbf{(D)}}</math>. | ||
− | ==Solution 4== | + | ==Solution 4 (geometrical approach)== |
− | |||
From the given, we have <math> a + b = 2 - c</math> and <math>a^2 + b^2 = 12 - c^2 </math>. The first equation is a line with x and y intercepts of <math>2-c</math> and the second equation is a circle centered at the origin with radius <math>\sqrt{12-c^2}</math>. Intuitively, if we want to find the minimum / maximum <math>c</math> such that there still exist real solutions, the two graphs of the equations should be tangent. | From the given, we have <math> a + b = 2 - c</math> and <math>a^2 + b^2 = 12 - c^2 </math>. The first equation is a line with x and y intercepts of <math>2-c</math> and the second equation is a circle centered at the origin with radius <math>\sqrt{12-c^2}</math>. Intuitively, if we want to find the minimum / maximum <math>c</math> such that there still exist real solutions, the two graphs of the equations should be tangent. |
Latest revision as of 01:37, 26 September 2024
Contents
Problem
Let and
be real numbers such that
What is the difference between the maximum and minimum possible values of ?
Solution 1
Note that . Now, by Cauchy-Schwarz, we have that
. Therefore, we have that
. We then find the roots of
that satisfy equality and find the difference of the roots. This gives the answer,
.
Note: We arrived at as we consider the two sets of numbers
and
. From Cauchy-Schwarz, we have that
.
which is how we got the second part of the inequality.
~minor edit by Yiyj1
Solution 2
This is similar to the first solution but is far more intuitive. From the given, we have
This immediately suggests use of the Cauchy-Schwarz inequality. By Cauchy, we have
Substitution of the above results and some algebra yields
This quadratic inequality is easily solved, and it is seen that equality holds for
and
.
The difference between these two values is .
Solution 3 (no Cauchy-Schwarz)
From the first equation, we know that . We substitute this into the second equation to find that
This simplifies to
, which we can write as the quadratic
. We wish to find real values for
and
that satisfy this equation. Therefore, the discriminant is nonnegative. Hence,
or
. This factors as
. Therefore,
, and by symmetry this must be true for
and
as well.
Now and
satisfy both equations, so we see that
must be the minimum possible value of
. Also,
and
satisfy both equations, so we see that
is the maximum possible value of
. The difference between these is
, or
.
Solution 4 (geometrical approach)
From the given, we have and
. The first equation is a line with x and y intercepts of
and the second equation is a circle centered at the origin with radius
. Intuitively, if we want to find the minimum / maximum
such that there still exist real solutions, the two graphs of the equations should be tangent.
Thus, we have that , which simplifies to
. Solving the quadratic, we get that the values of
for which the two graphs are tangent are
and
. Thus, our answer is
.
Solution 5
Draw the sphere and the plane represented by the two equations in Cartesian space, with the -axis representing
. The intersection between the sphere and plane is a circle. We wish to find the point on the circle where
is minimized and the point where
is maximized.
Looking at the graph, it is clear by symmetry that
when
is maximized or minimized. Thus, we can set
. This gives us the following system of equations:
Solving gives , which are the maximum and minimum values of
respectively. The answer follows from here.
Solution 6
We can consider ,
, and
to be solutions to a cubic equation. Then, given our information, we have
and
, so our cubic equation looks like this:
where
can be any real number.
Since this cubic has real solutions, it must have both a maximum and a minimum (noticed by looking at the graph). Then the greatest solution is maximized when the other two solutions are the same and is minimized when the other two solutions are the same.
Thus, equating and
, we have
and
Solving this, we get the quadratic
implying the answer.
Solution 7
Subtracting from the first equation yields
. Subtracting
from the second equation yields
. Thus we have the equations
Squaring the first equation yields
Subtracting the second equation from this one yields
Thus we have the system of equations
We can reverse Vieta's Formulas, to get that
and
are roots of the quadratic equation(in
)
Because we have
, we have that the discriminant of this quadratic equation must be nonnegative. The discriminant is
and it can be factored as
. Since we have
, we must have
. If
, then we have that
. If
, then
. If
, then
. If
, then
. If
, then
. Thus our inequality holds if and only if
, and the maxmimum value is
, whilst the minimum value is
. Thus the difference between the maximum and minimum values is
-vsamc
See also
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.