Difference between revisions of "2017 AMC 10B Problems/Problem 22"
(→Solution 3) |
Andrew2019 (talk | contribs) (→Solution 6 (Coordinate bashing)) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 37: | Line 37: | ||
</asy></center> | </asy></center> | ||
− | ==Solution 2== | + | ==Solution 2 (Similar Triangles) == |
We note that <math>\triangle ACB \sim \triangle ADE</math> by <math>AA</math> similarity. Also, since the area of <math>\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2</math> and <math>AE = \sqrt{74}</math>, <math>\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2</math>, so the area of <math>\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}</math>. | We note that <math>\triangle ACB \sim \triangle ADE</math> by <math>AA</math> similarity. Also, since the area of <math>\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2</math> and <math>AE = \sqrt{74}</math>, <math>\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2</math>, so the area of <math>\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}</math>. | ||
Line 64: | Line 64: | ||
-harsha12345 | -harsha12345 | ||
+ | |||
+ | == Solution 6 (Coordinate bashing) == | ||
+ | We draw out the diagram, and let the center of the circle be the origin. <math>A</math> would then be <math>(0,-2)</math>, and <math>B</math> would be <math>(2,0)</math>. We find that the equation of the line <math>AE</math> is <math>\frac{5}{7}x + \frac{10}{7}</math>. The equation of the circle is <math>x^2+y^2=4</math>. We use substitution and bashing with the quadratic formula to get <math>x = \frac{24}{37}</math>. From this, we get <math>y = \frac{70}{37}</math> and get that the area is <math>\frac{70}{37}\cdot 4/2 = \boxed{\textbf{(D) } \frac{140}{37}}</math>. | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2017|ab=B|num-b=21|num-a=23}} | {{AMC10 box|year=2017|ab=B|num-b=21|num-a=23}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 16:16, 13 May 2024
Contents
Problem
The diameter of a circle of radius is extended to a point outside the circle so that . Point is chosen so that and line is perpendicular to line . Segment intersects the circle at a point between and . What is the area of ?
Solution 1
Notice that and are right triangles. Then . , so . We also find that (You can also use power of point ~MATHWIZARD2010), and thus the area of is .
Solution 2 (Similar Triangles)
We note that by similarity. Also, since the area of and , , so the area of .
Solution 3
As stated before, note that is similar to . By similarity, we note that is equivalent to . We set to and to . By the Pythagorean Theorem, . Combining, . We can add and divide to get . We square root and rearrange to get . We know that the legs of the triangle are and . Multiplying by and eventually gives us and . We divide this by , since is the formula for a triangle. This gives us .
Solution 4
Let's call the center of the circle that segment is the diameter of, . Note that is an isosceles right triangle. Solving for side , using the Pythagorean theorem, we find it to be . Calling the point where segment intersects circle , the point , segment would be . Also, noting that is a right triangle, we solve for side , using the Pythagorean Theorem, and get . Using Power of Point on point , we can solve for . We can subtract from to find and then solve for using Pythagorean theorem once more.
= (Diameter of circle + ) = =
= - =
Now to solve for :
- = + = =
Note that is a right triangle because the hypotenuse is the diameter of the circle. Solving for area using the bases and , we get the area of triangle to be .
Solution 5 (Coordinate Geo)
Drawing the picture, we realize that the equation for the line from A to E is , and the equation for the circle is plugging in for y we get so , that means
the height is and the base is , so the area is
-harsha12345
Solution 6 (Coordinate bashing)
We draw out the diagram, and let the center of the circle be the origin. would then be , and would be . We find that the equation of the line is . The equation of the circle is . We use substitution and bashing with the quadratic formula to get . From this, we get and get that the area is .
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.