Difference between revisions of "2021 IMO Problems/Problem 2"

(Video solution)
m (Solution)
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
==Problem==
+
== Problem ==
 
Show that the inequality  
 
Show that the inequality  
 
<cmath>\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}</cmath>
 
<cmath>\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}</cmath>
 
holds for all real numbers <math>x_1,x_2,\dots,x_n</math>.
 
holds for all real numbers <math>x_1,x_2,\dots,x_n</math>.
  
==Solution with Integral ==
+
== Solution ==
https://youtu.be/akJOPrh5sqg
+
then, since <cmath>\sqrt{x}\geq 0,
 +
\sum_{i=1}^{n}\sum_{j=1}^{n}(\sqrt{x_i-x_j}^4)\leq \sum_{i=1}^{n}\sum_{j=1}^{n}(\sqrt{x_i+x_j}^4)</cmath>
 +
then, 
 +
<cmath>\sum \sum x_i^2+x_j^2-2x_ix_j \leq \sum \sum x_i^2+x_j^2+2x_ix_j
 +
\to \sum \sum 4x_ix_j\geq 0,</cmath>
 +
therefore we have to prove that
 +
<cmath>\sum \sum a_ia_j\geq 0</cmath> for every list <math>x_i</math>,
 +
and we can describe this to
 +
<cmath>\sum \sum a_ia_j=\sum a_i^2 + \sum\sum a_ia_j(i\neq j)</cmath>
 +
we know that
 +
<cmath>\frac{a_i^2}{2}+\frac{a_j^2}{2} \geq |a_ia_j|</cmath>
 +
therefore, <cmath>a_i^2+a_j^2 \geq -(a_ia_j+a_ja_i)</cmath>
 +
<cmath>\to \sum a_i^2 + \sum\sum a_ia_j \geq 0</cmath>
 +
<cmath>Q.E.D.</cmath>
 +
--[[User:Mathhyhyhye|Mathhyhyhy]] 13:29, 6 June 2023 (EST)
  
==Video solution==
+
== Video solutions ==
 
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]
 
https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]
 +
 +
https://youtu.be/akJOPrh5sqg [uses integral]
 +
 +
https://www.youtube.com/watch?v=P9Ge8HAf6xk
 +
 +
== See also ==
 +
{{IMO box|year=2021|num-b=1|num-a=3}}

Latest revision as of 05:11, 24 April 2024

Problem

Show that the inequality \[\sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i-x_j|} \le \sum_{i=1}^n \sum_{j=1}^n \sqrt{|x_i+x_j|}\] holds for all real numbers $x_1,x_2,\dots,x_n$.

Solution

then, since \[\sqrt{x}\geq 0,   \sum_{i=1}^{n}\sum_{j=1}^{n}(\sqrt{x_i-x_j}^4)\leq \sum_{i=1}^{n}\sum_{j=1}^{n}(\sqrt{x_i+x_j}^4)\] then, \[\sum \sum x_i^2+x_j^2-2x_ix_j \leq \sum \sum x_i^2+x_j^2+2x_ix_j \to \sum \sum 4x_ix_j\geq 0,\] therefore we have to prove that \[\sum \sum a_ia_j\geq 0\] for every list $x_i$, and we can describe this to \[\sum \sum a_ia_j=\sum a_i^2 + \sum\sum a_ia_j(i\neq j)\] we know that \[\frac{a_i^2}{2}+\frac{a_j^2}{2} \geq |a_ia_j|\] therefore, \[a_i^2+a_j^2 \geq -(a_ia_j+a_ja_i)\] \[\to \sum a_i^2 + \sum\sum a_ia_j \geq 0\] \[Q.E.D.\] --Mathhyhyhy 13:29, 6 June 2023 (EST)

Video solutions

https://youtu.be/cI9p-Z4-Sc8 [Video contains solutions to all day 1 problems]

https://youtu.be/akJOPrh5sqg [uses integral]

https://www.youtube.com/watch?v=P9Ge8HAf6xk

See also

2021 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions