Difference between revisions of "2021 JMPSC Accuracy Problems/Problem 1"

 
(4 intermediate revisions by 2 users not shown)
Line 13: Line 13:
 
The factors of <math>27</math> are <math>1</math>, <math>3</math>, <math>9</math> and <math>27</math>. Out of these, only <math>3</math>, <math>9</math> and <math>27</math> are multiples of <math>3</math>, so the answer is <math>3 + 9 + 27 = \boxed{39}</math>.
 
The factors of <math>27</math> are <math>1</math>, <math>3</math>, <math>9</math> and <math>27</math>. Out of these, only <math>3</math>, <math>9</math> and <math>27</math> are multiples of <math>3</math>, so the answer is <math>3 + 9 + 27 = \boxed{39}</math>.
  
 +
~Mathdreams
  
==See Also==
+
==See also==
{{JMPSC box|year=2021|ab=A|num-b=[b]First Problem[/b]|num-a=2}}
+
#[[2021 JMPSC Accuracy Problems|Other 2021 JMPSC Accuracy Problems]]
 +
#[[2021 JMPSC Accuracy Answer Key|2021 JMPSC Accuracy Answer Key]]
 +
#[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]]
 +
{{JMPSC Notice}}

Latest revision as of 16:22, 11 July 2021

Problem

Find the sum of all positive multiples of $3$ that are factors of $27.$

Solution

We use the fact that $3 = 3^1$ and $27 = 3^3$ to conclude that the only multiples of $3$ that are factors of $27$ are $3$, $9$, and $27$. Thus, our answer is $3 + 9 + 27 = \boxed{39}$.

~Bradygho

Solution 2

The factors of $27$ are $1$, $3$, $9$ and $27$. Out of these, only $3$, $9$ and $27$ are multiples of $3$, so the answer is $3 + 9 + 27 = \boxed{39}$.

~Mathdreams

See also

  1. Other 2021 JMPSC Accuracy Problems
  2. 2021 JMPSC Accuracy Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png