Difference between revisions of "2021 MECC Mock AMC 10"

(Problem 20)
(Problem 23)
 
(106 intermediate revisions by 2 users not shown)
Line 15: Line 15:
  
 
==Problem 4==
 
==Problem 4==
Compute the number of ways to arrange 2 distinguishable apples and five indistinguishable books.
+
Compute the number of ways to arrange 2 distinguishable apples and five indistinguishable books such that the five books must be all adjacent.
  
<math>\textbf{(A)} ~21 \qquad\textbf{(B)} ~42 \qquad\textbf{(C)} ~63 \qquad\textbf{(D)} ~84 \qquad\textbf{(E)} ~126 </math>
+
<math>\textbf{(A)} ~6 \qquad\textbf{(B)} ~12 \qquad\textbf{(C)} ~24 \qquad\textbf{(D)} ~42 \qquad\textbf{(E)} ~84 </math>
  
 
==Problem 5==
 
==Problem 5==
Galieo, Neton, Timiel, Fidgety and Jay are participants of a game in soccer. Their coach, Mr.Tom, will allocate them into two INDISTINGUISHABLE groups for practice purpose(People in the teams are interchangable). Given that the coach will not put Galieo and Timiel into the same team because they just had a fight. Find the number of ways the coach can put them into two such groups.  
+
In square <math>ABCD</math> with side length <math>8</math>, point <math>E</math> and <math>F</math> are on side <math>BC</math> and <math>CD</math> respectively, such that <math>AE</math> is perpendicular to <math>EF</math> and <math>CF=2</math>. Find the area enclosed by the quadrilateral <math>AECF</math>.  
  
<math>\textbf{(A)} ~24 \qquad\textbf{(B)} ~36 \qquad\textbf{(C)} ~48 \qquad\textbf{(D)} ~72 \qquad\textbf{(E)} ~144 </math>
+
<math>\textbf{(A)} ~20 \qquad\textbf{(B)} ~24 \qquad\textbf{(C)} ~28 \qquad\textbf{(D)} ~32 \qquad\textbf{(E)} ~36</math>
  
 
==Problem 6==
 
==Problem 6==
Line 44: Line 44:
 
<math>\textbf{(A)} ~\sqrt{6} \qquad\textbf{(B)} ~2\sqrt{2} \qquad\textbf{(C)} ~3 \qquad\textbf{(D)} ~2\sqrt{3} \qquad\textbf{(E)} ~4</math>
 
<math>\textbf{(A)} ~\sqrt{6} \qquad\textbf{(B)} ~2\sqrt{2} \qquad\textbf{(C)} ~3 \qquad\textbf{(D)} ~2\sqrt{3} \qquad\textbf{(E)} ~4</math>
  
[[File:4.png]]
+
[[File:4.png|300px]]
  
 
==Problem 10==
 
==Problem 10==
Find the number of nonempty subsets of <math>\{1,2,3,4,5,6,7,8,9,10\}</math> such that the product of all the numbers in the subset is NOT divisible by <math>16</math>.
+
<math>\frac{\sqrt{2}}{3}+\frac{\sqrt{3}}{4}+\frac{\sqrt{5}}{5}+\frac{\sqrt{6}}{7}+\frac{\sqrt{2}}{6}+\frac{\sqrt{3}}{8}+\frac{\sqrt{5}}{10}+\frac{\sqrt{6}}{14}+\frac{\sqrt{2}}{12}+\frac{\sqrt{3}}{16}+......</math>
 +
 
 +
The answer of this problem can be expressed as
 +
<math>\frac{a\sqrt{b}}{c}+\frac{\sqrt{e}}{f}+\frac{g\sqrt{h}}{j}+\frac{k\sqrt{m}}{n}</math> which <math>a,b,c,d,e,f,g,h,j,k,m,n</math> are not necessarily distinct positive integers, and all of <math>a,b,c,d,e,f,g,h,j,k,m,n</math> are not divisible by any square number. Find <math>a+b+c+d+e+f+g+h+j+k+m+n</math>.
  
<math>\textbf{(A)} ~341 \qquad\textbf{(B)} ~352 \qquad\textbf{(C)} ~415 \qquad\textbf{(D)} ~416 \qquad\textbf{(E)} ~448</math>
+
<math>\textbf{(A)} ~39 \qquad\textbf{(B)} ~40 \qquad\textbf{(C)} ~41 \qquad\textbf{(D)} ~42 \qquad\textbf{(E)} ~43</math>
  
 
==Problem 11==
 
==Problem 11==
In square <math>ABCD</math> with side length <math>8</math>, point <math>E</math> and <math>F</math> are on side <math>BC</math> and <math>CD</math> respectively, such that <math>AE</math> is perpendicular to <math>EF</math> and <math>CF=2</math>. Find the area enclosed by the quadrilateral <math>AECF</math>.  
+
Find the remainder when <math>147_{-16}</math> expressed in base <math>10</math> is divided by <math>1000</math>.
  
<math>\textbf{(A)} ~20 \qquad\textbf{(B)} ~24 \qquad\textbf{(C)} ~28 \qquad\textbf{(D)} ~32 \qquad\textbf{(E)} ~36</math>
+
<math>\textbf{(A)} ~198 \qquad\textbf{(B)} ~199 \qquad\textbf{(C)} ~200 \qquad\textbf{(D)} ~201 \qquad\textbf{(E)} ~202</math>
  
 
==Problem 12==
 
==Problem 12==
Find the remainder when <math>147_{-16}</math> expressed in base <math>10</math> is divided by 1000.
+
Let <math>S_n=a_1,a_2,a_3,a_4,a_5,a_6</math> be a <math>6</math> term sequence of positive integers such that <math>2\cdot a_1=a_2</math>,<math>4\cdot a_2=a_3</math>, <math>8\cdot a_3=a_4</math>, <math>16\cdot a_4=a_5</math>, <math>32\cdot a_5=a_6</math>. Find the number of such sequences <math>S_n</math> such that all of <math>a_1,a_2,a_3,a_4,a_5,a_6<10^{7}</math>.
  
<math>\textbf{(A)} ~198 \qquad\textbf{(B)} ~199 \qquad\textbf{(C)} ~200 \qquad\textbf{(D)} ~201 \qquad\textbf{(E)} ~202</math>
+
<math>\textbf{(A)} ~7 \qquad\textbf{(B)} ~32 \qquad\textbf{(C)} ~76 \qquad\textbf{(D)} ~305 \qquad\textbf{(E)} ~306</math>
  
 
==Problem 13==
 
==Problem 13==
Let <math>S_n=a_1,a_2,a_3,a_4,a_5,a_6</math> be a <math>6</math> term sequence of positive integers such that <math>2\cdot a_1=a_2</math>,<math>4\cdot a_2=a_3</math>, <math>8\cdot a_3=a_4</math>, <math>16\cdot a_4=a_5</math>, <math>32\cdot a_5=a_6</math>. Find the number of such sequences <math>S_n</math> such that all of <math>a_1,a_2,a_3,a_4,a_5,a_6<10^{7}</math>.
+
Galieo, Neton, Timiel, Fidgety and Jay are participants of a game in soccer. Their coach, Mr.Tom, will allocate them into two INDISTINGUISHABLE groups for practice purpose(People in the teams are interchangable). Given that the coach will not put Galieo and Timiel into the same team because they just had a fight. Find the number of ways the coach can put them into two such groups.  
  
<math>\textbf{(A)} ~7 \qquad\textbf{(B)} ~32 \qquad\textbf{(C)} ~76 \qquad\textbf{(D)} ~305 \qquad\textbf{(E)} ~306</math>
+
<math>\textbf{(A)} ~24 \qquad\textbf{(B)} ~36 \qquad\textbf{(C)} ~48 \qquad\textbf{(D)} ~72 \qquad\textbf{(E)} ~144 </math>
  
 
==Problem 14==
 
==Problem 14==
<math>\frac{\sqrt{2}}{3}+\frac{\sqrt{3}}{4}+\frac{\sqrt{5}}{5}+\frac{\sqrt{6}}{7}+\frac{\sqrt{2}}{6}+\frac{\sqrt{3}}{8}+\frac{\sqrt{5}}{10}+\frac{\sqrt{6}}{14}+\frac{\sqrt{2}}{12}+\frac{\sqrt{3}}{16}+......</math>
+
Find the number of nonempty subsets of <math>\{1,2,3,4,5,6,7,8,9,10\}</math> such that the product of all the numbers in the subset is NOT divisible by <math>16</math>.
  
The answer of this problem can be expressed as
+
<math>\textbf{(A)} ~341 \qquad\textbf{(B)} ~352 \qquad\textbf{(C)} ~415 \qquad\textbf{(D)} ~416 \qquad\textbf{(E)} ~448</math>
<math>\frac{a\sqrt{b}}{c}+\frac{\sqrt{e}}{f}+\frac{g\sqrt{h}}{j}+\frac{k\sqrt{m}}{n}</math> which <math>a,b,c,d,e,f,g,h,j,k,m,n</math> are not necessarily distinct positive integers, and all of <math>a,b,c,d,e,f,g,h,j,k,m,n</math> are not divisible by any square number. Find <math>a+b+c+d+e+f+g+h+j+k+m+n</math>.
 
 
 
<math>\textbf{(A)} ~39 \qquad\textbf{(B)} ~40 \qquad\textbf{(C)} ~41 \qquad\textbf{(D)} ~42 \qquad\textbf{(E)} ~43</math>
 
  
 
==Problem 15==
 
==Problem 15==
Line 80: Line 80:
  
 
==Problem 16==
 
==Problem 16==
Find the number of positive real numbers <math>n</math> that are less than or equal to <math>720</math> such that <math>\frac{n}{720}</math> is a four digit terminating decimal <math>0.abcd</math> which <math>d \neq 0</math>.
+
In square <math>ABCD</math>, point <math>E</math> and point <math>F</math> are the midpoints of side <math>CD</math> and <math>DA</math>, respectively. Line segments AE and FC are drawn inside the square and they intersects at point <math>G</math>. Find the ratio between the sum of the areas of quadrilaterals <math>FGED+GECB</math> and the square <math>ABCD</math>.  
  
<math>\textbf{(A)} ~16 \qquad\textbf{(B)} ~40 \qquad\textbf{(C)} ~72 \qquad\textbf{(D)} ~120 \qquad\textbf{(E)} ~240</math>
+
<math>\textbf{(A)} ~\frac{1}{2} \qquad\textbf{(B)} ~\frac{13}{24} \qquad\textbf{(C)} ~\frac{7}{12}\qquad\textbf{(D)} ~\frac{2}{3} \qquad\textbf{(E)} ~\frac{3}{4}</math>
  
 
==Problem 17==
 
==Problem 17==
Given that <math>f(x)=2x^2</math>, Find the area of region enclosed by the intersection point of <math>f(x)</math>, <math>f^{-1}(x)</math>, and the new point formed through rotations of <math>90^{\circ}, 180^{\circ}</math> and <math>270^{\circ}</math> about the origin.
+
In a circle with a radius of <math>4</math>, four arcs are drawn inside the circle. Smaller circles are inscribed inside the eye-shape diagrams. Let <math>x</math> denote the area of the greatest circle that can be inscribed inside the unshaded region. and let <math>y</math> denote the total area of unshaded region. Find <math>\frac{x}{y}</math>
 +
 
 +
[[File:18.png]]
  
<math>\textbf{(A)} ~1 \qquad\textbf{(B)} ~\sqrt{2} \qquad\textbf{(C)} ~2 \qquad\textbf{(D)} ~2\sqrt{2} \qquad\textbf{(E)} ~4</math>
+
<math>\textbf{(A)} ~\frac{(3-2\sqrt{2})\pi}{4-\pi} \qquad\textbf{(B)} ~\frac{(16-10\sqrt{2})\pi}{32-8\pi} \qquad\textbf{(C)} ~\frac{(2-\sqrt{2})\pi}{8-2\pi} \qquad\textbf{(D)} ~\frac{\pi}{32-8\pi}\qquad</math>
 +
 
 +
<math>\textbf{(E)}~\frac{\pi}{16-4\pi} </math>
  
 
==Problem 18==
 
==Problem 18==
Line 113: Line 117:
  
 
==Problem 19==
 
==Problem 19==
In a circle with a radius of <math>4</math>, four arcs are drawn inside the circle. Smaller circles are inscribed inside the eye-shape diagrams. Find the ratio between the area of the smaller circles to the area of the star-diagram.
+
Find the number of positive integers <math>n</math> that are less than or equal to <math>720</math> such that <math>\frac{n}{720}</math> is a four digit terminating decimal <math>0.abcd</math> which <math>d \neq 0</math>.
  
<math>\textbf{(A)} ~\frac{(3-2\sqrt{2})\pi}{8-2\pi} \qquad\textbf{(B)} ~\frac{16-12\sqrt{2}+\pi}{32-8\pi} \qquad\textbf{(C)} ~\frac{4\pi+\sqrt{2}}{8-2\pi} \qquad\textbf{(D)} ~\frac{\pi}{64-16\pi} \qquad</math>
+
<math>\textbf{(A)} ~16 \qquad\textbf{(B)} ~40 \qquad\textbf{(C)} ~72 \qquad\textbf{(D)} ~120 \qquad\textbf{(E)} ~240</math>
 
 
<math>\textbf{(E)} ~\frac{\pi+\sqrt{2}}{64-16\pi}</math>
 
 
 
[[File:18.png]]
 
  
 
==Problem 20==
 
==Problem 20==
 
In a square with length <math>2</math>, two overlapping quarter circle centered at two of the vertices of the square is drawn. Find the ratio of the shaded region to the area of the entire square.
 
In a square with length <math>2</math>, two overlapping quarter circle centered at two of the vertices of the square is drawn. Find the ratio of the shaded region to the area of the entire square.
  
[[File:20.png]]
+
[[File:20.png|250px]]
  
 
<math>\textbf{(A)} ~\frac{4-\sqrt{3}-\pi+\sqrt{6}}{4} \qquad\textbf{(B)} ~\frac{2-\pi+\sqrt{3}}{4} \qquad\textbf{(C)} ~\frac{\pi+6\sqrt{3}}{24} \qquad\textbf{(D)} ~\frac{\pi}{48} \qquad\textbf{(E)} ~\frac{3\sqrt{3}-\pi}{12}</math>
 
<math>\textbf{(A)} ~\frac{4-\sqrt{3}-\pi+\sqrt{6}}{4} \qquad\textbf{(B)} ~\frac{2-\pi+\sqrt{3}}{4} \qquad\textbf{(C)} ~\frac{\pi+6\sqrt{3}}{24} \qquad\textbf{(D)} ~\frac{\pi}{48} \qquad\textbf{(E)} ~\frac{3\sqrt{3}-\pi}{12}</math>
 +
 +
==Problem 21==
 +
Josh is playing a game. There are eight cards, each numbered from <math>2, 4,8,16,32,64,128,256</math>. Josh would choose <math>4</math> cards arbitrary with replacement. Given that the four numbers are <math>a,b,c,d</math>, find the probability that <math>a\cdot b\cdot c\cdot d</math> is a multiple of <math>8</math> but a factor of <math>512</math>.
 +
 +
<math>\textbf{(A)} ~\frac{15}{512} \qquad\textbf{(B)} ~\frac{121}{4096} \qquad\textbf{(C)} ~\frac{31}{1024} \qquad\textbf{(D)} ~\frac{63}{2048} \qquad\textbf{(E)} ~\frac{1}{32}</math>
  
 
==Problem 22==
 
==Problem 22==
There exists an increasing sequence of positive integers <math>a_1,a_2,a_3,a_4,a_5,......</math> such that the quotient when <math>13^{21}+1</math> is divided by <math>168</math> can be expressed <math>n^{a_1}+n^{a_2}+n^{a_3}+n^{a_4}+n^{a_5}+......+n^{a_k-1}+n^{a_k}+n</math> which <math>n</math> is a prime number and <math>a</math> is an integer that is as small as possible. Find the sum of <math>2n+a_1+a_2+a_3+a_4+a_5+...+a_k+n</math>.
+
There exists an increasing sequence of positive integers <math>a_1,a_2,a_3,a_4,a_5,......</math> such that the value of <math>\frac{13^{21}+1}{168}</math> can be expressed <math>n^{a_1}+n^{a_2}+n^{a_3}+n^{a_4}+n^{a_5}+......+n^{a_{k-1}}+n^{a_k}</math> with a remainder of <math>x</math>. which <math>n</math> is a prime number and <math>a_n</math> are integers as small as possible. Find the sum of <math>2n+a_1+a_2+a_3+a_4+a_5+...+a_k+x</math>.
  
 
<math>\textbf{(A)} ~123 \qquad\textbf{(B)} ~124 \qquad\textbf{(C)} ~125 \qquad\textbf{(D)} ~126 \qquad\textbf{(E)} ~127</math>
 
<math>\textbf{(A)} ~123 \qquad\textbf{(B)} ~124 \qquad\textbf{(C)} ~125 \qquad\textbf{(D)} ~126 \qquad\textbf{(E)} ~127</math>
 +
 +
==Problem 23==
 +
Given that <math>(x+y+z)^3=x^3+y^3+z^3+6591-507x-507y-507z+39xy+39yz+39xz-3xyz</math>. Find <math>MAX(xyz)-MIN(xyz)</math> such that all of <math>x,y,z</math> are nonnegative integers. (*Note that <math>MAX(xyz)</math> is the largest possible product of <math>xyz</math>, and <math>MIN(xyz)</math> is the smallest possible product of <math>xyz</math>.)
 +
 +
<math>\textbf{(A)} ~69 \qquad\textbf{(B)} ~80 \qquad\textbf{(C)} ~102 \qquad\textbf{(D)} ~132 \qquad\textbf{(E)} ~156</math>
  
 
==Problem 24==
 
==Problem 24==
Find the sum of last five digits of <cmath>\sum_{k=1}^{200} \sum_{k=4}^{50} {k-1 \choose 3}</cmath>.
+
Find the sum of last five digits of <cmath>\sum_{s=1}^{200} s\sum_{k=4}^{50} {k-1 \choose 3}</cmath>.
  
<math>\textbf{(A)} ~7 \qquad\textbf{(B)} ~9 \qquad\textbf{(C)} ~10 \qquad\textbf{(D)} ~11 \qquad\textbf{(E)} ~12</math>
+
<math>\textbf{(A)} ~3 \qquad\textbf{(B)} ~7 \qquad\textbf{(C)} ~10 \qquad\textbf{(D)} ~11 \qquad\textbf{(E)} ~12</math>
  
 
==Problem 25==
 
==Problem 25==
The Terminator is playing a game. He has a deck of card numbered from <math>1-12</math> and he also has two dices. There are three green cards, three blue cards, and six orange cards. Terminator already knew that the three blue cards are <math>9, 6, 4</math> but not necessary in this order, and the three green cards are <math>8,7,5</math> in some order. Terminator will play this game two rounds by choose one card without replacement and roll the two dice. However, at the beginning of the second round, he MUST choose either by reroll one die , re-choose one card WITH replacement or re-choose the card and choose one die to reroll. He wins if in the first rounds his sum of the card number is equal to the sum of the numbers on the dice and in the second round the sum of numbers on the dice is greater than the card number. Given that terminator is a perfectionist and he always optimize his chance of winning. Find the probability that Terminator will replace his card(He will replace the card and choose one die to reroll IF the probability of replace one card and reroll one die is equal.  
+
The Terminator is playing a game. He has a deck of card numbered from <math>1-12</math> and he also has two dices. There are three green cards, three blue cards, and six orange cards. Terminator already knew that the three blue cards are <math>9, 6, 4</math> but not necessary in this order, and the three green cards are <math>8,7,5</math> in some order. Terminator will play this game two rounds by choose one card without replacement and roll the two dice. However, at the beginning of the second round, he MUST choose either by reroll one die , re-choose one card WITH replacement or re-choose the card and choose one die to reroll. He wins if in the first rounds his sum of the card number is equal to the sum of the numbers on the dice and in the second round the sum of numbers on the dice is greater than the card number. Given that terminator is a perfectionist and he always optimize his chance of winning. Find the probability that Terminator will replace only his card(He will replace the card and choose one die to reroll IF the probability of replace one card and reroll one die is equal.  
  
<math>\textbf{(A)} ~\frac{1}{27} \qquad\textbf{(B)} ~\frac{1}{9} \qquad\textbf{(C)} ~\frac{5}{27} \qquad\textbf{(D)} ~\frac{7}{27} \qquad\textbf{(E)} ~\frac{1}{3} </math>
+
<math>\textbf{(A)} ~\frac{1}{27} \qquad\textbf{(B)} ~\frac{1}{9} \qquad\textbf{(C)} ~\frac{5}{27} \qquad\textbf{(D)} ~\frac{8}{27} \qquad\textbf{(E)} ~\frac{1}{3} </math>

Latest revision as of 16:38, 29 April 2021

Problem 1

Compute $|2^{2}+2^{1}+2^{0}-3^{1}-3^{2}-3^{3}|$

$\textbf{(A)} ~31 \qquad\textbf{(B)} ~32 \qquad\textbf{(C)} ~33 \qquad\textbf{(D)} ~34 \qquad\textbf{(E)} ~35$

Problem 2

Define a binary operation $a\%b=a^{2}+4ab+4b^{2}$. Find the number of possible ordered pair of positive integers $(a,b)$ such that $a\%b=25$.

$\textbf{(A)} ~0 \qquad\textbf{(B)} ~1 \qquad\textbf{(C)} ~2 \qquad\textbf{(D)} ~3 \qquad\textbf{(E)} ~4$

Problem 3

$\sqrt{8+4\sqrt{3}}$ can be expressed as $\sqrt{a}+\sqrt{b}$. Find $a+b$.

$\textbf{(A)} ~6 \qquad\textbf{(B)} ~8 \qquad\textbf{(C)} ~10 \qquad\textbf{(D)} ~12 \qquad\textbf{(E)} ~14$

Problem 4

Compute the number of ways to arrange 2 distinguishable apples and five indistinguishable books such that the five books must be all adjacent.

$\textbf{(A)} ~6 \qquad\textbf{(B)} ~12 \qquad\textbf{(C)} ~24 \qquad\textbf{(D)} ~42 \qquad\textbf{(E)} ~84$

Problem 5

In square $ABCD$ with side length $8$, point $E$ and $F$ are on side $BC$ and $CD$ respectively, such that $AE$ is perpendicular to $EF$ and $CF=2$. Find the area enclosed by the quadrilateral $AECF$.

$\textbf{(A)} ~20 \qquad\textbf{(B)} ~24 \qquad\textbf{(C)} ~28 \qquad\textbf{(D)} ~32 \qquad\textbf{(E)} ~36$

Problem 6

Let $a_n$ be a sequence of positive integers with $a_0=1$ and $a_1=2$ and $a_n=a_{n-1}\cdot a_{n+1}$ for all integers $n$ such that $n\geq 1$. Find $a_{2021}+a_{2023}+a_{2025}$.

$\textbf{(A)} ~3 \qquad\textbf{(B)} ~\frac{7}{2} \qquad\textbf{(C)} ~4 \qquad\textbf{(D)} ~\frac{9}{2} \qquad\textbf{(E)} ~5$

Problem 7

Find the sum of all the solutions of $x^{3}+9x-8=k+2x$, where $k$ can be any number. The roots may be repeated.

$\textbf{(A)} ~-11 \qquad\textbf{(B)} ~-7 \qquad\textbf{(C)} ~0 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~11$

Problem 8

Define $x$ the number of real numbers $n$ such that $\frac{(n)(n!)+n(n-1)!}{(n-1)!}$ is a perfect square. Find $x$.

$\textbf{(A)} ~0 \qquad\textbf{(B)} ~1 \qquad\textbf{(C)} ~2 \qquad\textbf{(D)} ~3 \qquad\textbf{(E)} ~4$

Problem 9

A unit cube ABCDEFGH is shown below. $A$ is reflected across the plane that contains line $CD$ and line $GH$. Then, it is reflected again across the plane that contains line $BC$ and $FG$. Call the new point $A'$. Find $FA'$.

$\textbf{(A)} ~\sqrt{6} \qquad\textbf{(B)} ~2\sqrt{2} \qquad\textbf{(C)} ~3 \qquad\textbf{(D)} ~2\sqrt{3} \qquad\textbf{(E)} ~4$

4.png

Problem 10

$\frac{\sqrt{2}}{3}+\frac{\sqrt{3}}{4}+\frac{\sqrt{5}}{5}+\frac{\sqrt{6}}{7}+\frac{\sqrt{2}}{6}+\frac{\sqrt{3}}{8}+\frac{\sqrt{5}}{10}+\frac{\sqrt{6}}{14}+\frac{\sqrt{2}}{12}+\frac{\sqrt{3}}{16}+......$

The answer of this problem can be expressed as $\frac{a\sqrt{b}}{c}+\frac{\sqrt{e}}{f}+\frac{g\sqrt{h}}{j}+\frac{k\sqrt{m}}{n}$ which $a,b,c,d,e,f,g,h,j,k,m,n$ are not necessarily distinct positive integers, and all of $a,b,c,d,e,f,g,h,j,k,m,n$ are not divisible by any square number. Find $a+b+c+d+e+f+g+h+j+k+m+n$.

$\textbf{(A)} ~39 \qquad\textbf{(B)} ~40 \qquad\textbf{(C)} ~41 \qquad\textbf{(D)} ~42 \qquad\textbf{(E)} ~43$

Problem 11

Find the remainder when $147_{-16}$ expressed in base $10$ is divided by $1000$.

$\textbf{(A)} ~198 \qquad\textbf{(B)} ~199 \qquad\textbf{(C)} ~200 \qquad\textbf{(D)} ~201 \qquad\textbf{(E)} ~202$

Problem 12

Let $S_n=a_1,a_2,a_3,a_4,a_5,a_6$ be a $6$ term sequence of positive integers such that $2\cdot a_1=a_2$,$4\cdot a_2=a_3$, $8\cdot a_3=a_4$, $16\cdot a_4=a_5$, $32\cdot a_5=a_6$. Find the number of such sequences $S_n$ such that all of $a_1,a_2,a_3,a_4,a_5,a_6<10^{7}$.

$\textbf{(A)} ~7 \qquad\textbf{(B)} ~32 \qquad\textbf{(C)} ~76 \qquad\textbf{(D)} ~305 \qquad\textbf{(E)} ~306$

Problem 13

Galieo, Neton, Timiel, Fidgety and Jay are participants of a game in soccer. Their coach, Mr.Tom, will allocate them into two INDISTINGUISHABLE groups for practice purpose(People in the teams are interchangable). Given that the coach will not put Galieo and Timiel into the same team because they just had a fight. Find the number of ways the coach can put them into two such groups.

$\textbf{(A)} ~24 \qquad\textbf{(B)} ~36 \qquad\textbf{(C)} ~48 \qquad\textbf{(D)} ~72 \qquad\textbf{(E)} ~144$

Problem 14

Find the number of nonempty subsets of $\{1,2,3,4,5,6,7,8,9,10\}$ such that the product of all the numbers in the subset is NOT divisible by $16$.

$\textbf{(A)} ~341 \qquad\textbf{(B)} ~352 \qquad\textbf{(C)} ~415 \qquad\textbf{(D)} ~416 \qquad\textbf{(E)} ~448$

Problem 15

Given that $x+y=8$, $x^2y^2+x^2+y^2=99$, and $x<y$, find $x^{16}+y^3+x^2y^4$.

$\textbf{(A)} ~2741 \qquad\textbf{(B)} ~2742 \qquad\textbf{(C)} ~2743 \qquad\textbf{(D)} ~2744 \qquad\textbf{(E)} ~2745$

Problem 16

In square $ABCD$, point $E$ and point $F$ are the midpoints of side $CD$ and $DA$, respectively. Line segments AE and FC are drawn inside the square and they intersects at point $G$. Find the ratio between the sum of the areas of quadrilaterals $FGED+GECB$ and the square $ABCD$.

$\textbf{(A)} ~\frac{1}{2} \qquad\textbf{(B)} ~\frac{13}{24} \qquad\textbf{(C)} ~\frac{7}{12}\qquad\textbf{(D)} ~\frac{2}{3} \qquad\textbf{(E)} ~\frac{3}{4}$

Problem 17

In a circle with a radius of $4$, four arcs are drawn inside the circle. Smaller circles are inscribed inside the eye-shape diagrams. Let $x$ denote the area of the greatest circle that can be inscribed inside the unshaded region. and let $y$ denote the total area of unshaded region. Find $\frac{x}{y}$

18.png

$\textbf{(A)} ~\frac{(3-2\sqrt{2})\pi}{4-\pi} \qquad\textbf{(B)} ~\frac{(16-10\sqrt{2})\pi}{32-8\pi} \qquad\textbf{(C)} ~\frac{(2-\sqrt{2})\pi}{8-2\pi} \qquad\textbf{(D)} ~\frac{\pi}{32-8\pi}\qquad$

$\textbf{(E)}~\frac{\pi}{16-4\pi}$

Problem 18

There exists a polynomial $f(x)=x^2+ax+b$ which $a$ and $b$ are both integers. How many of the following statements are true about all quadratics $f(x)$?


1. For every possible $f(x)$, there are at least $4$ of them such that $|a|=2b$ but two quadratic that $a=-b$ if the such $f(x)$ has all integer roots.


2. For all roots$(r_1)$ of any quadratic in $f(x)$, there exists infinite number of quadratic $q(x)$ such that $Q(r)=r_2$ if and only if $f(x)$ has all real solutions and all terms of $q(x)$ are real numbers.


3. For any quadratics in $f(x)$, there exists at least one quadratics such that they shares exactly one of the roots of $f(x)$ and all of the roots are positive integers.


4. Statement $1,2$


5. Statement $2,3$


6. Statement $1,2,3$

$\textbf{(A)} ~0 \qquad\textbf{(B)} ~1 \qquad\textbf{(C)} ~2 \qquad\textbf{(D)} ~3 \qquad\textbf{(E)} ~4$

Problem 19

Find the number of positive integers $n$ that are less than or equal to $720$ such that $\frac{n}{720}$ is a four digit terminating decimal $0.abcd$ which $d \neq 0$.

$\textbf{(A)} ~16 \qquad\textbf{(B)} ~40 \qquad\textbf{(C)} ~72 \qquad\textbf{(D)} ~120 \qquad\textbf{(E)} ~240$

Problem 20

In a square with length $2$, two overlapping quarter circle centered at two of the vertices of the square is drawn. Find the ratio of the shaded region to the area of the entire square.

20.png

$\textbf{(A)} ~\frac{4-\sqrt{3}-\pi+\sqrt{6}}{4} \qquad\textbf{(B)} ~\frac{2-\pi+\sqrt{3}}{4} \qquad\textbf{(C)} ~\frac{\pi+6\sqrt{3}}{24} \qquad\textbf{(D)} ~\frac{\pi}{48} \qquad\textbf{(E)} ~\frac{3\sqrt{3}-\pi}{12}$

Problem 21

Josh is playing a game. There are eight cards, each numbered from $2, 4,8,16,32,64,128,256$. Josh would choose $4$ cards arbitrary with replacement. Given that the four numbers are $a,b,c,d$, find the probability that $a\cdot b\cdot c\cdot d$ is a multiple of $8$ but a factor of $512$.

$\textbf{(A)} ~\frac{15}{512} \qquad\textbf{(B)} ~\frac{121}{4096} \qquad\textbf{(C)} ~\frac{31}{1024} \qquad\textbf{(D)} ~\frac{63}{2048} \qquad\textbf{(E)} ~\frac{1}{32}$

Problem 22

There exists an increasing sequence of positive integers $a_1,a_2,a_3,a_4,a_5,......$ such that the value of $\frac{13^{21}+1}{168}$ can be expressed $n^{a_1}+n^{a_2}+n^{a_3}+n^{a_4}+n^{a_5}+......+n^{a_{k-1}}+n^{a_k}$ with a remainder of $x$. which $n$ is a prime number and $a_n$ are integers as small as possible. Find the sum of $2n+a_1+a_2+a_3+a_4+a_5+...+a_k+x$.

$\textbf{(A)} ~123 \qquad\textbf{(B)} ~124 \qquad\textbf{(C)} ~125 \qquad\textbf{(D)} ~126 \qquad\textbf{(E)} ~127$

Problem 23

Given that $(x+y+z)^3=x^3+y^3+z^3+6591-507x-507y-507z+39xy+39yz+39xz-3xyz$. Find $MAX(xyz)-MIN(xyz)$ such that all of $x,y,z$ are nonnegative integers. (*Note that $MAX(xyz)$ is the largest possible product of $xyz$, and $MIN(xyz)$ is the smallest possible product of $xyz$.)

$\textbf{(A)} ~69 \qquad\textbf{(B)} ~80 \qquad\textbf{(C)} ~102 \qquad\textbf{(D)} ~132 \qquad\textbf{(E)} ~156$

Problem 24

Find the sum of last five digits of \[\sum_{s=1}^{200} s\sum_{k=4}^{50} {k-1 \choose 3}\].

$\textbf{(A)} ~3 \qquad\textbf{(B)} ~7 \qquad\textbf{(C)} ~10 \qquad\textbf{(D)} ~11 \qquad\textbf{(E)} ~12$

Problem 25

The Terminator is playing a game. He has a deck of card numbered from $1-12$ and he also has two dices. There are three green cards, three blue cards, and six orange cards. Terminator already knew that the three blue cards are $9, 6, 4$ but not necessary in this order, and the three green cards are $8,7,5$ in some order. Terminator will play this game two rounds by choose one card without replacement and roll the two dice. However, at the beginning of the second round, he MUST choose either by reroll one die , re-choose one card WITH replacement or re-choose the card and choose one die to reroll. He wins if in the first rounds his sum of the card number is equal to the sum of the numbers on the dice and in the second round the sum of numbers on the dice is greater than the card number. Given that terminator is a perfectionist and he always optimize his chance of winning. Find the probability that Terminator will replace only his card(He will replace the card and choose one die to reroll IF the probability of replace one card and reroll one die is equal.

$\textbf{(A)} ~\frac{1}{27} \qquad\textbf{(B)} ~\frac{1}{9} \qquad\textbf{(C)} ~\frac{5}{27} \qquad\textbf{(D)} ~\frac{8}{27} \qquad\textbf{(E)} ~\frac{1}{3}$