Difference between revisions of "2021 AMC 12A Problems/Problem 22"
MRENTHUSIASM (talk | contribs) m (→Solution 4.1 (Trigonometric Identities): Made the solution more concise.) |
MRENTHUSIASM (talk | contribs) (→Easy Video Solution by Scholars Foundation Without complex number and Euler's identity (Using Trigonometry + Vieta's Formula)) |
||
(68 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>? | Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>? | ||
− | <math>\textbf{(A) }-\frac{3}{49} \qquad \textbf{(B) }-\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math> | + | <math>\textbf{(A) }{-}\frac{3}{49} \qquad \textbf{(B) }{-}\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math> |
− | ==Solution 1== | + | ==Solution 1 (Complex Numbers: Vieta's Formulas)== |
+ | Let <math>z=e^{\frac{2\pi i}{7}}.</math> Since <math>z</math> is a <math>7</math>th root of unity, we have <math>z^7=1.</math> For all integers <math>k,</math> note that <math>\cos\frac{2k\pi}{7}=\operatorname{Re}\left(z^k\right)=\operatorname{Re}\left(z^{-k}\right)</math> and <math>\sin\frac{2k\pi}{7}=\operatorname{Im}\left(z^k\right)=-\operatorname{Im}\left(z^{-k}\right).</math> It follows that | ||
+ | <cmath>\begin{alignat*}{4} | ||
+ | \cos\frac{2\pi}{7} &= \frac{z+z^{-1}}{2} &&= \frac{z+z^6}{2}, \\ | ||
+ | \cos\frac{4\pi}{7} &= \frac{z^2+z^{-2}}{2} &&= \frac{z^2+z^5}{2}, \\ | ||
+ | \cos\frac{6\pi}{7} &= \frac{z^3+z^{-3}}{2} &&= \frac{z^3+z^4}{2}. | ||
+ | \end{alignat*}</cmath> | ||
+ | By geometric series, we conclude that <cmath>\sum_{k=0}^{6}z^k=\frac{1-1}{1-z}=0.</cmath> | ||
+ | Alternatively, recall that the <math>7</math>th roots of unity satisfy the equation <math>z^7-1=0.</math> By Vieta's Formulas, the sum of these seven roots is <math>0.</math> | ||
− | + | As a result, we get <cmath>\sum_{k=1}^{6}z^k=-1.</cmath> | |
+ | Let <math>(r,s,t)=\left(\cos{\frac{2\pi}{7}},\cos{\frac{4\pi}{7}},\cos{\frac{6\pi}{7}}\right).</math> By Vieta's Formulas, the answer is | ||
+ | <cmath>\begin{align*} | ||
+ | abc&=[-(r+s+t)](rs+st+tr)(-rst) \\ | ||
+ | &=(r+s+t)(rs+st+tr)(rst) \\ | ||
+ | &=\left(\frac{\sum_{k=1}^{6}z^k}{2}\right)\left(\frac{2\sum_{k=1}^{6}z^k}{4}\right)\left(\frac{1+\sum_{k=0}^{6}z^k}{8}\right) \\ | ||
+ | &=\frac{1}{32}\left(\sum_{k=1}^{6}z^k\right)\left(\sum_{k=1}^{6}z^k\right)\left(1+\sum_{k=0}^{6}z^k\right) \\ | ||
+ | &=\frac{1}{32}(-1)(-1)(1) \\ | ||
+ | &=\boxed{\textbf{(D) }\frac{1}{32}}. | ||
+ | \end{align*}</cmath> | ||
+ | ~MRENTHUSIASM (inspired by Peeyush Pandaya et al) | ||
− | + | ==Solution 2 (Complex Numbers: Trigonometric Identities)== | |
− | + | Let <math>z=e^{\frac{2\pi i}{7}}.</math> In Solution 1, we conclude that <math>\sum_{k=1}^{6}z^k=-1,</math> so <cmath>\sum_{k=1}^{6}\operatorname{Re}\left(z^k\right)=\sum_{k=1}^{6}\cos\frac{2k\pi}{7}=-1.</cmath> | |
− | + | Since <math>\cos\theta=\cos(2\pi-\theta)</math> holds for all <math>\theta,</math> this sum becomes | |
− | + | <cmath>\begin{align*} | |
− | + | 2\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right)&=-1\\ | |
− | + | \cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12. | |
− | + | \end{align*}</cmath> | |
− | + | Note that <math>\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}</math> are roots of <cmath>\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (\bigstar)</cmath> as they can be verified either algebraically (by the identity <math>\cos\theta=\cos(-\theta)=\cos(2\pi-\theta)</math>) or geometrically (by the graph below). | |
− | <math> | + | <asy> |
− | + | /* Made by MRENTHUSIASM */ | |
− | + | size(200); | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <math> \ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | + | int xMin = -2; | |
+ | int xMax = 2; | ||
+ | int yMin = -2; | ||
+ | int yMax = 2; | ||
+ | int numRays = 24; | ||
− | < | + | //Draws a polar grid that goes out to a number of circles |
+ | //equal to big, with numRays specifying the number of rays: | ||
+ | void polarGrid(int big, int numRays) | ||
+ | { | ||
+ | for (int i = 1; i < big+1; ++i) | ||
+ | { | ||
+ | draw(Circle((0,0),i), gray+linewidth(0.4)); | ||
+ | } | ||
+ | for(int i=0;i<numRays;++i) | ||
+ | draw(rotate(i*360/numRays)*((-big,0)--(big,0)), gray+linewidth(0.4)); | ||
+ | } | ||
− | < | + | //Draws the horizontal gridlines |
+ | void horizontalLines() | ||
+ | { | ||
+ | for (int i = yMin+1; i < yMax; ++i) | ||
+ | { | ||
+ | draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); | ||
+ | } | ||
+ | } | ||
− | < | + | //Draws the vertical gridlines |
+ | void verticalLines() | ||
+ | { | ||
+ | for (int i = xMin+1; i < xMax; ++i) | ||
+ | { | ||
+ | draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); | ||
+ | } | ||
+ | } | ||
− | + | horizontalLines(); | |
+ | verticalLines(); | ||
+ | polarGrid(xMax,numRays); | ||
+ | draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); | ||
+ | draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); | ||
+ | label("Re",(xMax,0),(2,0)); | ||
+ | label("Im",(0,yMax),(0,2)); | ||
− | + | //The n such that we're taking the nth roots of unity | |
+ | int n = 7; | ||
+ | pair A[]; | ||
+ | for(int i = 0; i <= n-1; i+=1) { | ||
+ | A[i] = rotate(360*i/n)*(1,0); | ||
+ | } | ||
+ | label("$1$",A[0],NE, UnFill); | ||
+ | for(int i =1; i < n; ++i) | ||
+ | { | ||
+ | label("$e^{\frac{" +string(2i)+"\pi i}{" + string(n) + "}}$",A[i],dir(A[i]), UnFill); | ||
+ | } | ||
− | + | draw(Circle((0,0),1),red); | |
− | + | for(int i = 0; i< n; ++i) dot(A[i],linewidth(3.5)); | |
− | + | </asy> | |
− | + | Let <math>x=\cos\theta.</math> It follows that | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
\cos(2\theta)&=2\cos^2\theta-1 \\ | \cos(2\theta)&=2\cos^2\theta-1 \\ | ||
Line 133: | Line 109: | ||
&=\cos(2\theta)\cos\theta-2\left(1-\cos^2\theta\right)\cos\theta \\ | &=\cos(2\theta)\cos\theta-2\left(1-\cos^2\theta\right)\cos\theta \\ | ||
&=\left(2x^2-1\right)x-2\left(1-x^2\right)x \\ | &=\left(2x^2-1\right)x-2\left(1-x^2\right)x \\ | ||
− | |||
&=4x^3-3x. | &=4x^3-3x. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | Rewriting <math>( | + | Rewriting <math>(\bigstar)</math> in terms of <math>x,</math> we have |
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
x+\left(2x^2-1\right)+\left(4x^3-3x\right)&=-\frac12 \\ | x+\left(2x^2-1\right)+\left(4x^3-3x\right)&=-\frac12 \\ | ||
4x^3+2x^2-2x-\frac12&=0 \\ | 4x^3+2x^2-2x-\frac12&=0 \\ | ||
− | x^3+\frac12 x^2 - \frac12 x - \frac18 &= 0 | + | x^3+\frac12 x^2 - \frac12 x - \frac18 &= 0, |
\end{align*}</cmath> | \end{align*}</cmath> | ||
+ | in which the roots are <math>x=\cos\frac{2\pi}{7},\cos\frac{4\pi}{7},\cos\frac{6\pi}{7}.</math> | ||
+ | |||
Therefore, we obtain <math>(a,b,c)=\left(\frac12,-\frac12,-\frac18\right),</math> from which <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | Therefore, we obtain <math>(a,b,c)=\left(\frac12,-\frac12,-\frac18\right),</math> from which <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | ||
~MRENTHUSIASM (inspired by Peeyush Pandaya et al) | ~MRENTHUSIASM (inspired by Peeyush Pandaya et al) | ||
− | + | ==Solution 3 (Trigonometric Identities)== | |
− | + | We solve for <math>a,b,</math> and <math>c</math> separately: | |
− | <cmath>\ | + | <ol style="margin-left: 1.5em;"> |
− | \cos{\frac{2\pi}{7 | + | <li>Solve for <math>a:</math> By Vieta's Formulas, we have <math>a = - \left( \cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7 \right).</math><p> |
− | \cos | + | The real parts of the <math>7</math>th roots of unity are <math>1, \cos \frac{2\pi}7, \cos \frac{4\pi}7, \cos \frac{6\pi}7, \cos \frac{8\pi}7, \cos \frac{10\pi}7, \cos \frac{12\pi}7</math> and they sum to <math>0.</math> <p> |
− | \cos | + | Note that <math>\cos\theta=\cos(2\pi-\theta)</math> for all <math>\theta.</math> Excluding <math>1,</math> the other six roots add to <cmath>2\left(\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7\right) = -1,</cmath> from which <cmath>\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7 = -\frac12.</cmath> |
− | \ | + | Therefore, we get <math>a = -\left(-\frac12\right) = \frac12.</math></li><p> |
− | + | <li>Solve for <math>b:</math> By Vieta's Formulas, we have <math>b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.</math><p> | |
− | + | Note that <math>\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}</math> for all <math>\alpha</math> and <math>\beta.</math> Therefore, we get <cmath>b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{6\pi}7 + \cos \frac{4\pi}7}2 + \frac{\cos \frac{4\pi}7 + \cos \frac{2\pi}7}2=\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7=-\frac12.</cmath></li> | |
+ | <li>Solve for <math>c:</math> By Vieta's Formulas, we have <math>c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{6\pi}7=-\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.</math> <p> | ||
+ | We multiply both sides by <math>8 \sin{\frac{2\pi}{7}},</math> then repeatedly apply the angle addition formula for sine: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | + | c \cdot 8 \sin{\frac{2\pi}{7}} &= -8 \sin{\frac{2\pi}{7}} \cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7 \\ | |
− | + | &= -4 \sin \frac{4\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7 \\ | |
− | &=\ | + | &= -2 \sin \frac{8\pi}7 \cos \frac{8\pi}7 \\ |
− | &=\frac{ | + | &= -\sin \frac{16\pi}7 \\ |
− | &=\frac{ | + | &= -\sin \frac{2\pi}7. |
− | &=\ | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
+ | Therefore, we get <math>c = -\frac18.</math><p> | ||
+ | </li> | ||
+ | </ol> | ||
+ | Finally, the answer is <math>abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | ||
− | ~ | + | ~Tucker |
− | == | + | == Solution 4 (Product-to-Sum Identity) == |
− | < | + | Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and <math>\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).</math> We have <cmath>\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,</cmath> so <math>a = \frac{1}{2}.</math> |
− | * | + | By the Product-to-Sum Identity, we have |
+ | <cmath>\begin{align*} | ||
+ | \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\ | ||
+ | &= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\ | ||
+ | &= \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \\ | ||
+ | &= -\frac{1}{2}, | ||
+ | \end{align*}</cmath> | ||
+ | so <math>b = -\frac{1}{2}.</math> | ||
− | * | + | By the Product-to-Sum Identity, we have |
+ | <cmath>\begin{align*} | ||
+ | \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2}\cos \frac{6 \pi}{7}\left(\cos \frac{2 \pi}{7} + \cos \frac{6 \pi}{7}\right) \\ | ||
+ | &= \frac{1}{4}\left(\cos \frac{4 \pi}{7} + \cos \frac{8 \pi}{7}\right) + \frac{1}{4}\left(1 + \cos \frac{12 \pi}{7}\right) \\ | ||
+ | &= \frac{1}{4}\left(1 + \cos\frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}\right) \\ | ||
+ | &= \frac{1}{8}, | ||
+ | \end{align*}</cmath> | ||
+ | so <math>c = -\frac{1}{8}.</math> | ||
− | + | Finally, we get <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | |
− | + | ~ccx09 | |
− | + | == Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula) == | |
+ | |||
+ | https://youtu.be/m4N4KN6_tA0 | ||
− | == Video Solution by OmegaLearn (Euler's Identity + Vieta's ) == | + | == Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula) == |
https://youtu.be/Im_WTIK0tss | https://youtu.be/Im_WTIK0tss | ||
~ pi_is_3.14 | ~ pi_is_3.14 | ||
+ | |||
+ | == Video Solution by MRENTHUSIASM (English & Chinese) == | ||
+ | https://youtu.be/X6oqEpFAJBk | ||
+ | |||
+ | ~MRENTHUSIASM | ||
==See also== | ==See also== |
Latest revision as of 12:52, 21 November 2024
Contents
- 1 Problem
- 2 Solution 1 (Complex Numbers: Vieta's Formulas)
- 3 Solution 2 (Complex Numbers: Trigonometric Identities)
- 4 Solution 3 (Trigonometric Identities)
- 5 Solution 4 (Product-to-Sum Identity)
- 6 Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula)
- 7 Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula)
- 8 Video Solution by MRENTHUSIASM (English & Chinese)
- 9 See also
Problem
Suppose that the roots of the polynomial are and , where angles are in radians. What is ?
Solution 1 (Complex Numbers: Vieta's Formulas)
Let Since is a th root of unity, we have For all integers note that and It follows that By geometric series, we conclude that Alternatively, recall that the th roots of unity satisfy the equation By Vieta's Formulas, the sum of these seven roots is
As a result, we get Let By Vieta's Formulas, the answer is ~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
Solution 2 (Complex Numbers: Trigonometric Identities)
Let In Solution 1, we conclude that so Since holds for all this sum becomes Note that are roots of as they can be verified either algebraically (by the identity ) or geometrically (by the graph below). Let It follows that Rewriting in terms of we have in which the roots are
Therefore, we obtain from which
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
Solution 3 (Trigonometric Identities)
We solve for and separately:
- Solve for By Vieta's Formulas, we have
The real parts of the th roots of unity are and they sum to
Note that for all Excluding the other six roots add to from which Therefore, we get
- Solve for By Vieta's Formulas, we have
Note that for all and Therefore, we get
- Solve for By Vieta's Formulas, we have
We multiply both sides by then repeatedly apply the angle addition formula for sine: Therefore, we get
Finally, the answer is
~Tucker
Solution 4 (Product-to-Sum Identity)
Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and We have so
By the Product-to-Sum Identity, we have so
By the Product-to-Sum Identity, we have so
Finally, we get
~ccx09
Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula)
Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula)
~ pi_is_3.14
Video Solution by MRENTHUSIASM (English & Chinese)
~MRENTHUSIASM
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.