Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 13"

(solution etc)
 
(Solution)
 
(One intermediate revision by one other user not shown)
Line 7: Line 7:
 
==Solution==
 
==Solution==
 
<math>\displaystyle (x - x_1)(x - x_2) = x^2 + ax + 1 = 0</math>, so <math>a = -(x_1 + x_2) \displaystyle</math> and <math>x_1 \cdot x_2 = 1</math> (the same goes for <math>b,\ x_3,\ x_4</math>).
 
<math>\displaystyle (x - x_1)(x - x_2) = x^2 + ax + 1 = 0</math>, so <math>a = -(x_1 + x_2) \displaystyle</math> and <math>x_1 \cdot x_2 = 1</math> (the same goes for <math>b,\ x_3,\ x_4</math>).
 +
 +
 +
<math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 \cdot x_2}
 +
= x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = a^2 - 2</math>
 +
 +
Similarly (for <math>b,\ x_3,\ x_4</math>) <math>\frac{x_3}{x_1x_2x_4} + \frac{x_4}{x_1x_2x_3} = b^2 - 2</math>
  
 
So
 
So
  
<math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3} = \frac{x_1^2 + x_2^2 + x_3^2 + x_4^2}{x_1 \cdot x_2 \cdot x_3 \cdot x_4}</math><math> = (x_1 + x_2)^2 - 2x_1x_2 + (x_3 + x_4)^2 - 2x_3x_4 = a^2 + b^2 - 4 \Longrightarrow \mathrm{E}</math>
+
<math>\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3} = a^2 + b^2 - 4 \Longrightarrow \mathrm{E}</math>
  
 
==See also==
 
==See also==
{{CYMO box|year=2007|l=Lyceum|num-b=3|num-a=5}}
+
{{CYMO box|year=2007|l=Lyceum|num-b=12|num-a=14}}
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Latest revision as of 10:02, 8 May 2007

Problem

If $x_1,\ x_2$ are the roots of the equation $\displaystyle x^2+ax+1=0$ and $x_3,\ x_4$ are the roots of the equation $\displaystyle x^2+bx+1=0$, then the expression $\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3}$ equals to

$\mathrm{(A) \ } a^2+b^2-2\qquad \mathrm{(B) \ } a^2+b^2\qquad \mathrm{(C) \ } \frac{a^2+b^2}{2}\qquad \mathrm{(D) \ } a^2+b^2+1\qquad \mathrm{(E) \ } a^2+b^2-4$

Solution

$\displaystyle (x - x_1)(x - x_2) = x^2 + ax + 1 = 0$, so $a = -(x_1 + x_2) \displaystyle$ and $x_1 \cdot x_2 = 1$ (the same goes for $b,\ x_3,\ x_4$).


$\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4} = \frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 \cdot x_2}  = x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = a^2 - 2$

Similarly (for $b,\ x_3,\ x_4$) $\frac{x_3}{x_1x_2x_4} + \frac{x_4}{x_1x_2x_3} = b^2 - 2$

So

$\frac{x_1}{x_2x_3x_4}+\frac{x_2}{x_1x_3x_4}+ \frac{x_3}{x_1x_2x_4}+\frac{x_4}{x_1x_2x_3} = a^2 + b^2 - 4 \Longrightarrow \mathrm{E}$

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30