Difference between revisions of "User:Ryanbear"

m (stars and bars on differences)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
I am <b>11</b> years old. <br>
+
127404754587834447066121402544149752403367309839754465976733876850535259518475909594695860306985322205112937748580959757733111433157235701022282968119850836745546278307667704653372658552406000753491774551479865697792135477161195521056948854517854321252265742150501216164186030139871809346990872684920506980997357017966298200142758044809690492762992755660707017875279058967437007588929796277764060005089298064214879589772413549606947968900674428405521400284241554092224188812033614398140341416473369322228003712839254347683876360616572060502059408555377390203293482422877390956933461744147435089970769638752323062428466355987800018937157222463250323840029581098946400823076380412044514339147538180167529051650422579358398763747733709530588882192847356109601997103404801625719264806184704255207773908632121628121218556422577808407442065598527465689061110360187188596406144329463393282277302397966695581626834527593057345685374346326761582158844627492731128776756877171629235767714578716392603611050291611235105023611651718910803700546140521204265462337603808882061589065658546143476080287873475025789654838047330757693980821316863367969599435264122353134402662193709738448765684330622112034563823693091508527188449444500442756555017615788366729759464961260910397767745133388131924611118524177500315369815288246600110733944359683619713264458796518204141705157408836206828853802276808129896518197206059000967489007947494199187456685532519042382615340141998121997925402526097853864089771736576331094606267537797084686987144893315555255778802812164754555272187462332469488499359068615277933740654314904814067621603997908775954281427807648276302695080017958941502363864647300207518768563640133589122519343502638958821545894862462914776956651328199557013757056920367625244333556095179493403092211525722809465689794903682679719038165781179884534083331850224305649971759849018003101612781711795572282485772318031665207271428539033496032608058902377993956463498837626382048313745553856555641257865927315980059368278785925298640945249848925204586323353123125638120957640808875972082926783468636960979905910145024
I like <b>math</b>.<br>
+
 
I like <b>programing</b>.<br>
+
==stars and bars on differences==
My favorite programing language is <b>python</b>.
+
To find the number of ways to choose <math>n</math> numbers between <math>a</math> and <math>b</math> if they are indistinguishable but can have duplicates let <math>a_1</math> be the difference between the smallest number and <math>a</math>, <math>a_2</math> be the difference between the 2rd and 1st smallest numbers, and similar logic to get <math>a_{n+1}</math> is the difference between <math>b</math> and the largest number. <math>a_1+a_2+...+a_{n+1}=b-a</math>. Then use stars and bars to get <math>{n+b-a \choose n}</math>

Latest revision as of 12:39, 22 October 2023

127404754587834447066121402544149752403367309839754465976733876850535259518475909594695860306985322205112937748580959757733111433157235701022282968119850836745546278307667704653372658552406000753491774551479865697792135477161195521056948854517854321252265742150501216164186030139871809346990872684920506980997357017966298200142758044809690492762992755660707017875279058967437007588929796277764060005089298064214879589772413549606947968900674428405521400284241554092224188812033614398140341416473369322228003712839254347683876360616572060502059408555377390203293482422877390956933461744147435089970769638752323062428466355987800018937157222463250323840029581098946400823076380412044514339147538180167529051650422579358398763747733709530588882192847356109601997103404801625719264806184704255207773908632121628121218556422577808407442065598527465689061110360187188596406144329463393282277302397966695581626834527593057345685374346326761582158844627492731128776756877171629235767714578716392603611050291611235105023611651718910803700546140521204265462337603808882061589065658546143476080287873475025789654838047330757693980821316863367969599435264122353134402662193709738448765684330622112034563823693091508527188449444500442756555017615788366729759464961260910397767745133388131924611118524177500315369815288246600110733944359683619713264458796518204141705157408836206828853802276808129896518197206059000967489007947494199187456685532519042382615340141998121997925402526097853864089771736576331094606267537797084686987144893315555255778802812164754555272187462332469488499359068615277933740654314904814067621603997908775954281427807648276302695080017958941502363864647300207518768563640133589122519343502638958821545894862462914776956651328199557013757056920367625244333556095179493403092211525722809465689794903682679719038165781179884534083331850224305649971759849018003101612781711795572282485772318031665207271428539033496032608058902377993956463498837626382048313745553856555641257865927315980059368278785925298640945249848925204586323353123125638120957640808875972082926783468636960979905910145024

stars and bars on differences

To find the number of ways to choose $n$ numbers between $a$ and $b$ if they are indistinguishable but can have duplicates let $a_1$ be the difference between the smallest number and $a$, $a_2$ be the difference between the 2rd and 1st smallest numbers, and similar logic to get $a_{n+1}$ is the difference between $b$ and the largest number. $a_1+a_2+...+a_{n+1}=b-a$. Then use stars and bars to get ${n+b-a \choose n}$