Difference between revisions of "2006 iTest Problems/Problem U8"

m (Fixed the value.)
m
 
Line 2: Line 2:
  
 
Cyclic quadrilateral  <math>ABCD</math> has side lengths  <math>AB  =  9</math>,  <math>BC  =  2</math>,  <math>CD  =  3</math>, and  <math>DA  =  10</math>. Let  <math>M</math> and  <math>N</math> be the midpoints of sides  <math>AD</math> and <math>BC</math>. The diagonals  <math>AC</math> and  <math>BD</math> intersect  <math>MN</math> at  <math>P</math> and  <math>Q</math> respectively.  <math>\frac{PQ}{MN}</math> can be expressed as <math>\frac{m}{n}</math> where  <math>m</math> and  <math>n</math> are relatively prime positive integers. Determine  <math>m  +  n</math>.
 
Cyclic quadrilateral  <math>ABCD</math> has side lengths  <math>AB  =  9</math>,  <math>BC  =  2</math>,  <math>CD  =  3</math>, and  <math>DA  =  10</math>. Let  <math>M</math> and  <math>N</math> be the midpoints of sides  <math>AD</math> and <math>BC</math>. The diagonals  <math>AC</math> and  <math>BD</math> intersect  <math>MN</math> at  <math>P</math> and  <math>Q</math> respectively.  <math>\frac{PQ}{MN}</math> can be expressed as <math>\frac{m}{n}</math> where  <math>m</math> and  <math>n</math> are relatively prime positive integers. Determine  <math>m  +  n</math>.
 +
 +
[[Category: Intermediate Geometry Problems]]

Latest revision as of 17:57, 17 December 2021

Problem

Cyclic quadrilateral $ABCD$ has side lengths $AB  =  9$, $BC  =  2$, $CD  =  3$, and $DA  =  10$. Let $M$ and $N$ be the midpoints of sides $AD$ and $BC$. The diagonals $AC$ and $BD$ intersect $MN$ at $P$ and $Q$ respectively. $\frac{PQ}{MN}$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Determine $m  +  n$.