Difference between revisions of "1961 IMO Problems/Problem 1"

 
(Solution 2)
 
(12 intermediate revisions by 6 users not shown)
Line 1: Line 1:
Solve the following system of equations:
+
== Problem ==
  
<math>x + y + z = a</math>
+
(''Hungary'')
 +
Solve the system of equations:
  
<math>x^2</math><math>+y^2+z^2=b^2</math>
+
<center>
 +
<math>
 +
\begin{matrix}
 +
\quad x + y + z \!\!\! &= a \; \, \\
 +
x^2 +y^2+z^2 \!\!\! &=b^2 \\
 +
\qquad \qquad xy \!\!\!  &= z^2
 +
\end{matrix}
 +
</math>
 +
</center>
  
<math>xy = z^2</math>
+
where <math>a </math> and <math>b </math> are constants.  Give the conditions that <math>a </math> and <math>b </math> must satisfy so that <math>x, y, z </math> (the solutions of the system) are distinct positive numbers.
  
where ''a'' and ''b'' are given real numbersWhat conditions must hold on ''a'' and ''b'' for the solutions to be positive and distinct?
+
== Solution 1==
 +
 
 +
Note that <math>x^2 + y^2 = (x+y)^2 - 2xy = (x+y)^2 - 2z^2 </math>, so the first two equations become
 +
<center>
 +
<math>
 +
\begin{matrix}
 +
\quad (x + y) + z \!\!\! &= a \; \; (*) \\
 +
(x+y)^2 - z^2 \!\!\! &=b^2 (**)
 +
\end{matrix}
 +
</math>.
 +
</center>
 +
 
 +
We note that <math>(x+y)^2 - z^2 = \Big[ (x+y)+z \Big]\Big[ (x+y)-z\Big] </math>, so if <math>a </math> equals 0, then <math>b </math> must also equal 0.  We then have <math> x+y = -z </math>; <math>xy = (x+y)^2 </math>.  This gives us <math>x^2 + xy + y^2 = 0 </math>.  Mutiplying both sides by <math>(x-y) </math>, we have <math>x^3 - y^3 = 0 </math>.  Since we want <math>x,y </math> to be real, this implies <math>x = y </math>.  But <math>x^2 + x^2 + x^2 </math> can only equal 0 when <math>x=0 </math> (which, in this case, implies <math>y,z = 0 </math>).  Hence there are no positive solutions when <math>a = 0 </math>.
 +
 
 +
When <math>a \neq 0 </math>, we divide <math>(**) </math> by <math>(*) </math> to obtain the system of equations
 +
<center>
 +
<math>
 +
\begin{matrix}
 +
(x+y)+z &= a \; \quad \\
 +
(x+y)-z &= b^2/a
 +
\end{matrix}
 +
</math>,
 +
</center>
 +
which clearly has solution <math> x+y = \frac{a^2 + b^2}{2a} </math>, <math> z = \frac{a^2 - b^2}{2a} </math>.  In order for these both to be positive, we must have positive <math>a </math> and <math>a^2 > b^2 </math>.  Now, we have <math> x+y = \frac{a^2 + b^2}{2a} </math>; <math> xy = \left(\frac{a^2 - b^2}{2a}\right)^2 </math>, so <math>x,y </math> are the roots of the quadratic <math> m^2 - \frac{a^2 + b^2}{2a}m + \left(\frac{a^2 - b^2}{2a}\right)^2 </math>The [[discriminant]] for this equation is
 +
<center>
 +
<math>
 +
\left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2 = \frac{ (3a^2 - b^2)(3b^2 - a^2) }{4a^2}
 +
</math>.
 +
</center>
 +
If the expressions <math>(3a^2 - b^2), (3b^2 - a^2) </math> were simultaneously negative, then their sum, <math>2(a^2 + b^2) </math>, would also be negative, which cannot be.  Therefore our quadratic's discriminant is positive when <math>3a^2 > b^2 </math> and <math>3b^2 > a^2 </math>.  But we have already replaced the first inequality with the sharper bound <math>a^2 > b^2 </math>.  It is clear that both roots of the quadratic must be positive if the discriminant is positive (we can see this either from <math> \left(\frac{a^2 + b^2}{2a}\right)^2 > \left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2 </math> or from [[Polynomial#Descartes.27_Law_of_Signs | Descartes' Rule of Signs]]).  We have now found the solutions to the system, and determined that it has positive solutions if and only if <math>a </math> is positive and <math>3b^2 > a^2 > b^2 </math>.  Q.E.D.
 +
 
 +
==Solution 2==
 +
 
 +
Obviously, <math>a=x+y+z>0</math>. The third equation implies that <math>x,z,y</math> is a geometric sequence. Then let <math>x=\frac{z}{r}</math> and <math>y=rz</math>, with <math>r,z>0</math> and <math>r\neq1</math>. Then the first two equations become:
 +
<cmath>\left(r+1+\frac{1}{r}\right)z=a~~~(1)</cmath>
 +
and
 +
<cmath>\left(r^2+1+\frac{1}{r^2}\right)z^2=b^2~~~(2)</cmath>
 +
Taking <math>\frac{(2)}{(1)}</math> (since <math>z>0</math>), we get:
 +
<cmath>\frac{(r^2+1+\frac{1}{r^2})z^2}{(r+1+\frac{1}{r})z}=\left(r-1+\frac{1}{r}\right)z=\frac{b^2}{a}~~~(3)</cmath>
 +
We can then take <math>(1)^2-(2)</math> and <math>(2)-(3)^2</math> to get:
 +
<cmath>\left(r^2+2r+3+\frac{2}{r}+\frac{1}{r^2}\right)z^2-\left(r^2+1+\frac{1}{r^2}\right)z^2=2z^2\left(r+1+\frac{1}{r}\right)=a^2-b^2~~~(4)</cmath>
 +
and
 +
<cmath>\left(r^2+1+\frac{1}{r^2}\right)z^2-\left(r^2-2r+3-\frac{2}{r}+\frac{1}{r^2}\right)z^2=2z^2\left(r-1+\frac{1}{r}\right)=b^2-\frac{b^4}{a^2}=\frac{b^2}{a^2}(a^2-b^2)~~~(5)</cmath>
 +
Let <math>k=r+\frac{1}{r}</math>. By AM-GM, <math>k\ge2</math> with equality at <math>r=\frac{1}{r}\implies r=1</math>, which is impossible. Hence, <math>k>2</math>. Then, <math>\frac{(5)}{(4)}</math> becomes:
 +
<cmath>\frac{k-1}{k+1}=\frac{b^2}{a^2}~(6)\implies a^2+b^2=(a^2-b^2)k>2(a^2-b^2)\implies3b^2>a^2</cmath>
 +
From the above restrictions on <math>a</math> and <math>b</math>, we see that there must exist some <math>k>2</math> satisfying <math>(6)</math>, and hence, some <math>r>0\neq1</math> satisfying <math>(6)</math>. From <math>(4)</math>, if <math>a^2-b^2>0</math>, then there must exist some positive <math>z</math> satisfying <math>(4)</math>, and consequently since <math>(4)</math> and <math>(6)</math> are equivalent to the remaining equations, they satisfy <math>(1)</math> and <math>(2)</math>. Hence, <math>x,y,z</math> satisfy the original system, and from the restrictions on <math>r</math> and <math>z</math>, they are distinct positive reals. Hence, <math>\boxed{a>0\text{ and }3b^2>a^2>b^2}</math>. <math>\blacksquare</math>
 +
 
 +
~rhydon516
 +
 
 +
===Video Solution===
 +
https://www.youtube.com/watch?v=_stCjNU0_M4&list=PLa8j0YHOYQQJGzkvK2Sm00zrh0aIQnof8&index=3
 +
- AMBRIGGS
 +
 
 +
https://youtu.be/e5cuvmW0clk  [Video Solution by little fermat]
 +
 
 +
 
 +
{{alternate solutions}}
 +
{{IMO box|year=1961|before=First question|num-a=2}}
 +
 
 +
 
 +
[[Category:Olympiad Algebra Problems]]

Latest revision as of 17:15, 26 March 2024

Problem

(Hungary) Solve the system of equations:

$\begin{matrix} \quad x + y + z \!\!\! &= a \; \, \\ x^2 +y^2+z^2 \!\!\! &=b^2 \\ \qquad \qquad xy \!\!\!  &= z^2 \end{matrix}$

where $a$ and $b$ are constants. Give the conditions that $a$ and $b$ must satisfy so that $x, y, z$ (the solutions of the system) are distinct positive numbers.

Solution 1

Note that $x^2 + y^2 = (x+y)^2 - 2xy = (x+y)^2 - 2z^2$, so the first two equations become

$\begin{matrix} \quad (x + y) + z \!\!\! &= a \; \; (*) \\ (x+y)^2 - z^2 \!\!\! &=b^2 (**) \end{matrix}$.

We note that $(x+y)^2 - z^2 = \Big[ (x+y)+z \Big]\Big[ (x+y)-z\Big]$, so if $a$ equals 0, then $b$ must also equal 0. We then have $x+y = -z$; $xy = (x+y)^2$. This gives us $x^2 + xy + y^2 = 0$. Mutiplying both sides by $(x-y)$, we have $x^3 - y^3 = 0$. Since we want $x,y$ to be real, this implies $x = y$. But $x^2 + x^2 + x^2$ can only equal 0 when $x=0$ (which, in this case, implies $y,z = 0$). Hence there are no positive solutions when $a = 0$.

When $a \neq 0$, we divide $(**)$ by $(*)$ to obtain the system of equations

$\begin{matrix} (x+y)+z &= a \; \quad \\ (x+y)-z &= b^2/a \end{matrix}$,

which clearly has solution $x+y = \frac{a^2 + b^2}{2a}$, $z = \frac{a^2 - b^2}{2a}$. In order for these both to be positive, we must have positive $a$ and $a^2 > b^2$. Now, we have $x+y = \frac{a^2 + b^2}{2a}$; $xy = \left(\frac{a^2 - b^2}{2a}\right)^2$, so $x,y$ are the roots of the quadratic $m^2 - \frac{a^2 + b^2}{2a}m + \left(\frac{a^2 - b^2}{2a}\right)^2$. The discriminant for this equation is

$\left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2 = \frac{ (3a^2 - b^2)(3b^2 - a^2) }{4a^2}$.

If the expressions $(3a^2 - b^2), (3b^2 - a^2)$ were simultaneously negative, then their sum, $2(a^2 + b^2)$, would also be negative, which cannot be. Therefore our quadratic's discriminant is positive when $3a^2 > b^2$ and $3b^2 > a^2$. But we have already replaced the first inequality with the sharper bound $a^2 > b^2$. It is clear that both roots of the quadratic must be positive if the discriminant is positive (we can see this either from $\left(\frac{a^2 + b^2}{2a}\right)^2 > \left(\frac{a^2 + b^2}{2a}\right)^2 - \left(2\frac{a^2 -b^2}{2a}\right)^2$ or from Descartes' Rule of Signs). We have now found the solutions to the system, and determined that it has positive solutions if and only if $a$ is positive and $3b^2 > a^2 > b^2$. Q.E.D.

Solution 2

Obviously, $a=x+y+z>0$. The third equation implies that $x,z,y$ is a geometric sequence. Then let $x=\frac{z}{r}$ and $y=rz$, with $r,z>0$ and $r\neq1$. Then the first two equations become: \[\left(r+1+\frac{1}{r}\right)z=a~~~(1)\] and \[\left(r^2+1+\frac{1}{r^2}\right)z^2=b^2~~~(2)\] Taking $\frac{(2)}{(1)}$ (since $z>0$), we get: \[\frac{(r^2+1+\frac{1}{r^2})z^2}{(r+1+\frac{1}{r})z}=\left(r-1+\frac{1}{r}\right)z=\frac{b^2}{a}~~~(3)\] We can then take $(1)^2-(2)$ and $(2)-(3)^2$ to get: \[\left(r^2+2r+3+\frac{2}{r}+\frac{1}{r^2}\right)z^2-\left(r^2+1+\frac{1}{r^2}\right)z^2=2z^2\left(r+1+\frac{1}{r}\right)=a^2-b^2~~~(4)\] and \[\left(r^2+1+\frac{1}{r^2}\right)z^2-\left(r^2-2r+3-\frac{2}{r}+\frac{1}{r^2}\right)z^2=2z^2\left(r-1+\frac{1}{r}\right)=b^2-\frac{b^4}{a^2}=\frac{b^2}{a^2}(a^2-b^2)~~~(5)\] Let $k=r+\frac{1}{r}$. By AM-GM, $k\ge2$ with equality at $r=\frac{1}{r}\implies r=1$, which is impossible. Hence, $k>2$. Then, $\frac{(5)}{(4)}$ becomes: \[\frac{k-1}{k+1}=\frac{b^2}{a^2}~(6)\implies a^2+b^2=(a^2-b^2)k>2(a^2-b^2)\implies3b^2>a^2\] From the above restrictions on $a$ and $b$, we see that there must exist some $k>2$ satisfying $(6)$, and hence, some $r>0\neq1$ satisfying $(6)$. From $(4)$, if $a^2-b^2>0$, then there must exist some positive $z$ satisfying $(4)$, and consequently since $(4)$ and $(6)$ are equivalent to the remaining equations, they satisfy $(1)$ and $(2)$. Hence, $x,y,z$ satisfy the original system, and from the restrictions on $r$ and $z$, they are distinct positive reals. Hence, $\boxed{a>0\text{ and }3b^2>a^2>b^2}$. $\blacksquare$

~rhydon516

Video Solution

https://www.youtube.com/watch?v=_stCjNU0_M4&list=PLa8j0YHOYQQJGzkvK2Sm00zrh0aIQnof8&index=3 - AMBRIGGS

https://youtu.be/e5cuvmW0clk [Video Solution by little fermat]


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

1961 IMO (Problems) • Resources
Preceded by
First question
1 2 3 4 5 6 Followed by
Problem 2
All IMO Problems and Solutions