Difference between revisions of "2020 AMC 10A Problems/Problem 1"

(Undo revision 143337 by Probanterjr (talk))
(Tag: Undo)
(Solution 2)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
What value of <math>x</math> satisfies <cmath>x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?</cmath>
+
What value of <math>x</math> satisfies
 +
<cmath>x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?</cmath>
 +
<math>\textbf{(A)}\ {-}\frac{2}{3}\qquad\textbf{(B)}\ \frac{7}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{5}{6}</math>
  
<math>\textbf{(A)}\ -\frac{2}{3}\qquad\textbf{(B)}\ \frac{7}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{5}{6}</math>
+
== Solution 1 ==  
 
 
== Solution ==  
 
  
 
Adding <math>\frac{3}{4}</math> to both sides, <math>x= \frac{5}{12} - \frac{1}{3} + \frac{3}{4} = \frac{5}{12} - \frac{4}{12} + \frac{9}{12}=\boxed{\textbf{(E) }\frac{5}{6}}</math>.
 
Adding <math>\frac{3}{4}</math> to both sides, <math>x= \frac{5}{12} - \frac{1}{3} + \frac{3}{4} = \frac{5}{12} - \frac{4}{12} + \frac{9}{12}=\boxed{\textbf{(E) }\frac{5}{6}}</math>.
  
 
==Solution 2==
 
==Solution 2==
Multiplying <math>12</math> on both sides gets us <math>12x-9=1</math>, therefore <math>\boxed{x=\textbf{(E)}~\frac{5}{6}}</math>.
+
Multiplying <math>12</math> on both sides gets us <math>12x-9=1 \Rightarrow 12x=10</math>, therefore <math>x=\boxed{\textbf{(E)}~\frac{5}{6}}</math>.
  
 
==Video Solution 1==
 
==Video Solution 1==

Latest revision as of 01:03, 11 November 2024

Problem

What value of $x$ satisfies \[x- \frac{3}{4} = \frac{5}{12} - \frac{1}{3}?\] $\textbf{(A)}\ {-}\frac{2}{3}\qquad\textbf{(B)}\ \frac{7}{36}\qquad\textbf{(C)}\ \frac{7}{12}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{5}{6}$

Solution 1

Adding $\frac{3}{4}$ to both sides, $x= \frac{5}{12} - \frac{1}{3} + \frac{3}{4} = \frac{5}{12} - \frac{4}{12} + \frac{9}{12}=\boxed{\textbf{(E) }\frac{5}{6}}$.

Solution 2

Multiplying $12$ on both sides gets us $12x-9=1 \Rightarrow 12x=10$, therefore $x=\boxed{\textbf{(E)}~\frac{5}{6}}$.

Video Solution 1

Education, The Study of Everything

https://youtu.be/4lsmGWDYusk

Video Solution 2

~IceMatrix https://youtu.be/WUcbVNy2uv0

Video Solution 3

https://www.youtube.com/watch?v=7-3sl1pSojc

~bobthefam

Video Solution 4

https://youtu.be/OKoBg15l8ro

~savannahsolve

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png