Difference between revisions of "2019 AMC 12A Problems/Problem 19"
m (minor spacing changes) |
(→Solution 3) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In <math>\triangle ABC</math> with integer side lengths, <math>\cos A = \frac{11}{16}</math>, <math>\cos B = \frac{7}{8}</math>, and<math>\cos C = -\frac{1}{4}</math>. What is the least possible perimeter for <math>\triangle ABC</math>? | + | In <math>\triangle ABC</math> with integer side lengths, <math>\cos A = \frac{11}{16}</math>, <math>\cos B = \frac{7}{8}</math>, and <math>\cos C = -\frac{1}{4}</math>. What is the least possible perimeter for <math>\triangle ABC</math>? |
<math>\textbf{(A) } 9 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 23 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 44</math> | <math>\textbf{(A) } 9 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 23 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 44</math> | ||
Line 28: | Line 28: | ||
~hiker | ~hiker | ||
+ | |||
+ | == Video Solution1 == | ||
+ | https://youtu.be/E8gk7VkLxos | ||
+ | |||
+ | ~ Education, the Study of Everything | ||
== See Also == | == See Also == | ||
{{AMC12 box|year=2019|ab=A|num-b=18|num-a=20}} | {{AMC12 box|year=2019|ab=A|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 15:37, 12 September 2022
Contents
Problem
In with integer side lengths, , , and . What is the least possible perimeter for ?
Solutions
Solution 1
Notice that by the Law of Sines, , so let's flip all the cosines using ( is positive for , so we're good there).
These are in the ratio , so our minimal triangle has side lengths , , and . is our answer.
Solution 2
is obtuse since its cosine is negative, so we let the foot of the altitude from to be . Let , , , and . By the Pythagorean Theorem, and . Thus, . The sides of the triangle are then , , and , so for some integers , and , where and are minimal. Hence, , or . Thus the smallest possible positive integers and that satisfy this are and , so . The sides of the triangle are , , and , so is our answer.
Solution 3
Using the law of cosines, we get the following equations:
Substituting for in and simplifying, we get the following:
Note that since are integers, we can solve this for integers. By some trial and error, we get that . Checking to see that this fits the triangle inequality, we find out that this indeed works. Hence, our answer is .
~hiker
Video Solution1
~ Education, the Study of Everything
See Also
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.