Difference between revisions of "2005 AMC 8 Problems/Problem 18"
Pi is 3.14 (talk | contribs) (→Solution 1) |
Pi is 3.14 (talk | contribs) (→Video Solution) |
||
(One intermediate revision by one other user not shown) | |||
Line 4: | Line 4: | ||
<math> \textbf{(A)}\ 7\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ 69\qquad\textbf{(D)}\ 76\qquad\textbf{(E)}\ 77</math> | <math> \textbf{(A)}\ 7\qquad\textbf{(B)}\ 67\qquad\textbf{(C)}\ 69\qquad\textbf{(D)}\ 76\qquad\textbf{(E)}\ 77</math> | ||
− | ==Video Solution== | + | |
+ | ==Solution== | ||
+ | Let <math>k</math> be any positive integer so that <math>13k</math> is a multiple of <math>13</math>. For the smallest three-digit number, <math>13k>100</math> and <math>k>\frac{100}{13} \approx 7.7</math>. For the greatest three-digit number, <math>13k<999</math> and <math>k<\frac{999}{13} \approx 76.8</math>. The number <math>k</math> can range from <math>8</math> to <math>76</math> so there are <math>\boxed{\textbf{(C)}\ 69}</math> three-digit numbers. | ||
+ | |||
+ | |||
+ | ==Video Solution by OmegaLearn== | ||
https://youtu.be/7an5wU9Q5hk?t=393 | https://youtu.be/7an5wU9Q5hk?t=393 | ||
− | ==Solution | + | ==Video Solution 2== |
− | + | https://youtu.be/101Rgutx1R0 Soo, DRMS, NM | |
+ | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2005|num-b=17|num-a=19}} | {{AMC8 box|year=2005|num-b=17|num-a=19}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 03:07, 29 December 2022
Problem
How many three-digit numbers are divisible by 13?
Solution
Let be any positive integer so that is a multiple of . For the smallest three-digit number, and . For the greatest three-digit number, and . The number can range from to so there are three-digit numbers.
Video Solution by OmegaLearn
https://youtu.be/7an5wU9Q5hk?t=393
Video Solution 2
https://youtu.be/101Rgutx1R0 Soo, DRMS, NM
See Also
2005 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.