Difference between revisions of "2019 CIME I Problems/Problem 10"

(Created page with "Let <math>x</math>, <math>y</math>, and <math>z</math> be real numbers such that <math>x^2=3-2yz</math>, <math>y^2=4-2xz</math>, and <math>z^2=5-2xy</math>. The value of <math...")
 
(Solution 1)
 
(One intermediate revision by one other user not shown)
Line 2: Line 2:
  
 
=Solution 1=
 
=Solution 1=
Let <math>n</math> be our answer. Notice <math>(y�-z)^2 = x^2 + y^2 + z^2 - (x2 + 2yz)= n-�3</math>. Similarly, <math>(x-�z)^2 = n-4</math> and <math>(y-x)^2 = n-5</math>. Now notice that since <math>y-�z = (x-z)+(y-x)</math>, we have <math>\sqrt{n-3}=\sqrt{n-4}+\sqrt{n-5} \implies </math>n^2-12n+36=4n^2-36n+80<math> so </math>3n^2-24n+44=0<math> and </math>n=4 \pm \frac{2}{\sqrt 3}<math>. The answer is </math>\boxed 9$.
+
Let <math>n</math> be our answer. Notice <math>(y-z)^2 = x^2 + y^2 + z^2 - (x^2 + 2yz)= n-3</math>. Similarly, <math>(x-z)^2 = n-4</math> and <math>(y-x)^2 = n-5</math>. Now notice that since <math>y-z = (x-z)+(y-x)</math>, we have <math>\sqrt{n-3}=\sqrt{n-4}+\sqrt{n-5} \implies n^2-12n+36=4n^2-36n+80</math> so <math>3n^2-24n+44=0</math> and <math>n=4 \pm \frac{2}{\sqrt 3}</math>. The answer is <math>\boxed 9</math>.
  
 
==See also==
 
==See also==

Latest revision as of 20:52, 19 February 2021

Let $x$, $y$, and $z$ be real numbers such that $x^2=3-2yz$, $y^2=4-2xz$, and $z^2=5-2xy$. The value of $x^2+y^2+z^2$ can be written as $a+\frac{b}{\sqrt c}$ for positive integers $a, b, c$, where $c$ is not divisible by the square of any prime. Find $a+b+c$.

Solution 1

Let $n$ be our answer. Notice $(y-z)^2 = x^2 + y^2 + z^2 - (x^2 + 2yz)= n-3$. Similarly, $(x-z)^2 = n-4$ and $(y-x)^2 = n-5$. Now notice that since $y-z = (x-z)+(y-x)$, we have $\sqrt{n-3}=\sqrt{n-4}+\sqrt{n-5} \implies n^2-12n+36=4n^2-36n+80$ so $3n^2-24n+44=0$ and $n=4 \pm \frac{2}{\sqrt 3}$. The answer is $\boxed 9$.

See also

2019 CIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions

The problems on this page are copyrighted by the MAC's Christmas Mathematics Competitions. AMC logo.png