Difference between revisions of "1972 AHSME Problems/Problem 25"

(Created page with "==Solution== We note that <math>25^2+60^2=65^2</math> and <math>39^2+52^2=65^2</math> so our answer is <math>\boxed{65}</math>. -Pleaseletmewin")
 
m (Solution)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
Inscribed in a circle is a quadrilateral having sides of lengths <math>25,~39,~52</math>, and <math>60</math> taken consecutively. The diameter of this circle has length
 +
 +
<math>\textbf{(A) }62\qquad \textbf{(B) }63\qquad \textbf{(C) }65\qquad \textbf{(D) }66\qquad  \textbf{(E) }69</math>
 +
 
==Solution==
 
==Solution==
  
We note that <math>25^2+60^2=65^2</math> and <math>39^2+52^2=65^2</math> so our answer is <math>\boxed{65}</math>.
+
We note that <math>25^2+60^2=65^2</math> and <math>39^2+52^2=65^2</math> so our answer is <math>\boxed{C}</math>.
  
 
-Pleaseletmewin
 
-Pleaseletmewin
 +
 +
Alternate Solution:
 +
 +
Let's call <math>\overline{AB}=25</math>, <math>\overline{BC}=39</math>, <math>\overline{CD}=52</math>, <math>\overline{DA}=60</math>. Let's call <math>\overline{BD}=x</math> and <math>\angle{DAB}=y</math>. By LoC we get the relations
 +
 +
<cmath>x^2=25^2+60^2-3000\cos(y)</cmath>
 +
<cmath>x^2=39^2+52^2-4056\cos(180-y)</cmath>
 +
 +
If we do a bit of computation we get <math>x^2=4225-3000\cos(y)</math>, and <math>x^2=4225-4056\cos(y)</math>. This means that <math>4056\cos(y)=3000\cos(180-y)</math>.
 +
 +
We know that <math>\cos(180-y)=-\cos(y)</math> so substituting back in we get <math>4056\cos(y)=-3000\cos(y)</math>. We can clearly see that the only solution of this is <math>\cos(y)=0</math> or <math>y=90</math>. This then means that <math>\angle{BAD}=90</math> and <math>\angle{BCD}=90</math>. If a triangle is a right triangle and is inscribed in a circle then the diameter is the hypotenuse.
 +
 +
This means that the diameter is <math>\sqrt{4225}=65</math> so our answer is <math>\boxed{C}</math>.
 +
 +
-Bole (edited for easier readability)

Latest revision as of 09:14, 29 January 2021

Inscribed in a circle is a quadrilateral having sides of lengths $25,~39,~52$, and $60$ taken consecutively. The diameter of this circle has length

$\textbf{(A) }62\qquad \textbf{(B) }63\qquad \textbf{(C) }65\qquad \textbf{(D) }66\qquad  \textbf{(E) }69$

Solution

We note that $25^2+60^2=65^2$ and $39^2+52^2=65^2$ so our answer is $\boxed{C}$.

-Pleaseletmewin

Alternate Solution:

Let's call $\overline{AB}=25$, $\overline{BC}=39$, $\overline{CD}=52$, $\overline{DA}=60$. Let's call $\overline{BD}=x$ and $\angle{DAB}=y$. By LoC we get the relations

\[x^2=25^2+60^2-3000\cos(y)\] \[x^2=39^2+52^2-4056\cos(180-y)\]

If we do a bit of computation we get $x^2=4225-3000\cos(y)$, and $x^2=4225-4056\cos(y)$. This means that $4056\cos(y)=3000\cos(180-y)$.

We know that $\cos(180-y)=-\cos(y)$ so substituting back in we get $4056\cos(y)=-3000\cos(y)$. We can clearly see that the only solution of this is $\cos(y)=0$ or $y=90$. This then means that $\angle{BAD}=90$ and $\angle{BCD}=90$. If a triangle is a right triangle and is inscribed in a circle then the diameter is the hypotenuse.

This means that the diameter is $\sqrt{4225}=65$ so our answer is $\boxed{C}$.

-Bole (edited for easier readability)