Difference between revisions of "1956 AHSME Problems/Problem 49"

m
(Solution)
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Solution 1
+
==Problem==
 +
Triangle <math>PAB</math> is formed by three tangents to circle <math>O</math> and <math>\angle APB = 40^{\circ}</math>; then <math>\angle AOB</math> equals:
 +
 
 +
<math>\textbf{(A)}\ 45^{\circ}\qquad \textbf{(B)}\ 50^{\circ}\qquad \textbf{(C)}\ 55^{\circ}\qquad \textbf{(D)}\ 60^{\circ}\qquad \textbf{(E)}\ 70^{\circ}</math>
 +
 
 +
 
 +
 
 +
==Solution==
  
 
First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>.
 
First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>.
Line 5: Line 12:
 
Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence,  
 
Also, <math>\angle BAT = 180^\circ - \angle BAP</math>, and <math>\angle ABR = 180^\circ - \angle ABP</math>. Hence,  
  
<math>\angle AOB &= 180^\circ - \angle BAO - \angle ABO \\
+
<math>\angle AOB = 180^\circ - \angle BAO - \angle ABO =
&= 180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} \\
+
180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} =
&= 180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2} \\
+
180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2}=
&= \frac{\angle BAP + \angle ABP}{2}.</math>
+
\frac{\angle BAP + \angle ABP}{2}.</math>
  
 
Finally, from triangle <math>ABP</math>, <math>\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ</math>, so <cmath>\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.</cmath>
 
Finally, from triangle <math>ABP</math>, <math>\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ</math>, so <cmath>\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.</cmath>
 +
 +
== See Also ==
 +
 +
{{AHSME 50p box|year=1956|num-b=48|num-a=50}}
 +
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 00:32, 3 January 2024

Problem

Triangle $PAB$ is formed by three tangents to circle $O$ and $\angle APB = 40^{\circ}$; then $\angle AOB$ equals:

$\textbf{(A)}\ 45^{\circ}\qquad \textbf{(B)}\ 50^{\circ}\qquad \textbf{(C)}\ 55^{\circ}\qquad \textbf{(D)}\ 60^{\circ}\qquad \textbf{(E)}\ 70^{\circ}$


Solution

First, from triangle $ABO$, $\angle AOB = 180^\circ - \angle BAO - \angle ABO$. Note that $AO$ bisects $\angle BAT$ (to see this, draw radii from $O$ to $AB$ and $AT,$ creating two congruent right triangles), so $\angle BAO = \angle BAT/2$. Similarly, $\angle ABO = \angle ABR/2$.

Also, $\angle BAT = 180^\circ - \angle BAP$, and $\angle ABR = 180^\circ - \angle ABP$. Hence,

$\angle AOB = 180^\circ - \angle BAO - \angle ABO =  180^\circ - \frac{\angle BAT}{2} - \frac{\angle ABR}{2} =  180^\circ - \frac{180^\circ - \angle BAP}{2} - \frac{180^\circ - \angle ABP}{2}=   \frac{\angle BAP + \angle ABP}{2}.$

Finally, from triangle $ABP$, $\angle BAP + \angle ABP = 180^\circ - \angle APB = 180^\circ - 40^\circ = 140^\circ$, so \[\angle AOB = \frac{\angle BAP + \angle ABP}{2} = \frac{140^\circ}{2} = \boxed{70^\circ}.\]

See Also

1956 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 48
Followed by
Problem 50
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png