Difference between revisions of "2009 IMO Problems/Problem 2"

(Diagram)
(Ph.D degree, IMO coach,https://www.youtube.com/@math000)
 
(3 intermediate revisions by 2 users not shown)
Line 4: Line 4:
  
 
''Author: Sergei Berlov, Russia''
 
''Author: Sergei Berlov, Russia''
 +
 +
== Video Solution ==
 +
 +
https://youtu.be/c1zwoYCMR28
  
 
== Solution ==
 
== Solution ==
 
===Diagram===
 
===Diagram===
 
<asy>
 
<asy>
dot("O", (50, 38), NW);
+
dot("O", (50, 38), N);
 
dot("A", (40, 100), N);
 
dot("A", (40, 100), N);
 
dot("B", (0, 0), S);
 
dot("B", (0, 0), S);
Line 40: Line 44:
 
&=R^2-PO^2.
 
&=R^2-PO^2.
 
\end{align*}</cmath> It follows that <math>OP=OQ.</math> <math>\blacksquare</math>
 
\end{align*}</cmath> It follows that <math>OP=OQ.</math> <math>\blacksquare</math>
 +
 +
==See Also==
 +
 +
{{IMO box|year=2009|num-b=1|num-a=3}}

Latest revision as of 18:22, 22 August 2024

Problem

Let $ABC$ be a triangle with circumcentre $O$. The points $P$ and $Q$ are interior points of the sides $CA$ and $AB$ respectively. Let $K,L$ and $M$ be the midpoints of the segments $BP,CQ$ and $PQ$, respectively, and let $\Gamma$ be the circle passing through $K,L$ and $M$. Suppose that the line $PQ$ is tangent to the circle $\Gamma$. Prove that $OP=OQ$.

Author: Sergei Berlov, Russia

Video Solution

https://youtu.be/c1zwoYCMR28

Solution

Diagram

[asy] dot("O", (50, 38), N); dot("A", (40, 100), N); dot("B", (0, 0), S); dot("C", (100, 0), S); dot("Q", (24, 60), W); dot("P", (52, 80), E); dot("L", (62, 30), SE); dot("M", (38, 70), N); dot("K", (27, 42), W); draw((100, 0)--(24, 60), dotted); draw((0, 0)--(52, 80), dashed); draw((0, 0)--(100, 0)--(40, 100)--cycle); draw((24, 60)--(52, 80)); draw((27, 42)--(38, 70)--(62, 30)--cycle); draw(circle((49, 49), 23)); label("$\Gamma$", (72, 49), E); draw(circle((50, 38), 63)); label("$\omega$", (-13, 38), NW); [/asy] Diagram by qwertysri987


By parallel lines and the tangency condition, \[\angle APM\cong \angle LMP \cong \angle LKM.\] Similarly, \[\angle AQP\cong \angle KLM,\] so AA similarity implies \[\triangle APQ\sim \triangle MKL.\] Let $\omega$ denote the circumcircle of $\triangle ABC,$ and $R$ its circumradius. As both $P$ and $Q$ are inside $\omega,$

\begin{align*} R^2-QO^2&=\text{Pow}_{\omega}(Q)\\ &=QB\cdot AQ \\ &=2AQ\cdot MK\\ &=2AP\cdot ML\\ &=AP\cdot PC\\ &=\text{Pow}_{\omega}(P)\\ &=R^2-PO^2. \end{align*} It follows that $OP=OQ.$ $\blacksquare$

See Also

2009 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions