Difference between revisions of "1976 AHSME Problems/Problem 6"
(Created page with "=Problem 6= If <math>c</math> is a real number and the negative of one of the solutions of <math>x^2-3x+c=0</math> is a solution of <math>x^2+3x-c=0</math>, then the solutions...") |
(→Problem 6) |
||
Line 1: | Line 1: | ||
=Problem 6= | =Problem 6= | ||
If <math>c</math> is a real number and the negative of one of the solutions of <math>x^2-3x+c=0</math> is a solution of <math>x^2+3x-c=0</math>, then the solutions of <math>x^2-3x+c=0</math> are | If <math>c</math> is a real number and the negative of one of the solutions of <math>x^2-3x+c=0</math> is a solution of <math>x^2+3x-c=0</math>, then the solutions of <math>x^2-3x+c=0</math> are | ||
+ | |||
<math>\textbf{(A) }1,~2\qquad \textbf{(B) }-1,~-2\qquad \textbf{(C) }0,~3\qquad \textbf{(D) }0,~-3\qquad \textbf{(E) }\frac{3}{2},~\frac{3}{2}</math> | <math>\textbf{(A) }1,~2\qquad \textbf{(B) }-1,~-2\qquad \textbf{(C) }0,~3\qquad \textbf{(D) }0,~-3\qquad \textbf{(E) }\frac{3}{2},~\frac{3}{2}</math> | ||
+ | |||
=Solution= | =Solution= | ||
We let the roots of the first equation be <math>r,s</math> and the roots of the second equation be <math>s, -t</math>. By Vieta's Formulas, <math>r+s=3</math> and <math>s-t=-3</math>, <math>rs=c</math> and <math>-st=c</math>. So, <math>r=t</math>. Thus, <math>t+s=3</math>, <math>s-t=3</math>, so <math>t=0</math>, and <math>s=3\Rightarrow \textbf{(C)}</math>.~MathJams | We let the roots of the first equation be <math>r,s</math> and the roots of the second equation be <math>s, -t</math>. By Vieta's Formulas, <math>r+s=3</math> and <math>s-t=-3</math>, <math>rs=c</math> and <math>-st=c</math>. So, <math>r=t</math>. Thus, <math>t+s=3</math>, <math>s-t=3</math>, so <math>t=0</math>, and <math>s=3\Rightarrow \textbf{(C)}</math>.~MathJams | ||
{{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}} | {{AHSME box|year=1976|before=[[1975 AHSME]]|after=[[1977 AHSME]]}} |
Latest revision as of 19:11, 12 July 2020
Problem 6
If is a real number and the negative of one of the solutions of is a solution of , then the solutions of are
Solution
We let the roots of the first equation be and the roots of the second equation be . By Vieta's Formulas, and , and . So, . Thus, , , so , and .~MathJams
1976 AHSME (Problems • Answer Key • Resources) | ||
Preceded by 1975 AHSME |
Followed by 1977 AHSME | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |