Difference between revisions of "Superagh's Olympiad Notes"
(Created page with "==Introduction== SINCE MY COMPUTER WON'T LOAD THIS FOR SOME REASON, I'LL BE UPDATING THIS AS I GO THOUGH :) Ok, so inspired by master math solver Lcz, I have decided to take...") |
(→Introduction) |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 3: | Line 3: | ||
Ok, so inspired by master math solver Lcz, I have decided to take Oly notes (for me) online! I'll probably be yelled at even more for staring at the computer, but I know that this is for my good. (Also this thing is almost the exact same format as Lcz's :P ). (Ok, actually, a LOT of credits to Lcz) | Ok, so inspired by master math solver Lcz, I have decided to take Oly notes (for me) online! I'll probably be yelled at even more for staring at the computer, but I know that this is for my good. (Also this thing is almost the exact same format as Lcz's :P ). (Ok, actually, a LOT of credits to Lcz) | ||
+ | |||
+ | NEVERYMIND I"M DOING THIS ON MY BLOG SINCE IT"LL LOAD | ||
==Algebra== | ==Algebra== | ||
Line 15: | Line 17: | ||
If <math>x \ge y</math>, then<cmath>pm_x(a_1, a_2, \cdots , a_n) \ge pm_y(a_1, a_2, \cdots , a_n).</cmath> | If <math>x \ge y</math>, then<cmath>pm_x(a_1, a_2, \cdots , a_n) \ge pm_y(a_1, a_2, \cdots , a_n).</cmath> | ||
− | Power mean (weighted) | + | ====Power mean (weighted)==== |
Statement: Let <math>a_1, a_2, a_3, . . . a_n</math> be positive real numbers. Let <math>w_1, w_2, w_3, . . . w_n</math> be positive real numbers ("weights") such that <math>w_1+w_2+w_3+ . . . w_n=1</math>. For any <math>r \in \mathbb{R}</math>, | Statement: Let <math>a_1, a_2, a_3, . . . a_n</math> be positive real numbers. Let <math>w_1, w_2, w_3, . . . w_n</math> be positive real numbers ("weights") such that <math>w_1+w_2+w_3+ . . . w_n=1</math>. For any <math>r \in \mathbb{R}</math>, | ||
Line 33: | Line 35: | ||
====Bernoulli's Inequality==== | ====Bernoulli's Inequality==== | ||
Given that <math>n</math>, <math>x</math> are real numbers such that <math>n\ge 0</math> and <math>x \ge -1</math>, we have:<cmath>(1+x)^n \ge 1+nx.</cmath> | Given that <math>n</math>, <math>x</math> are real numbers such that <math>n\ge 0</math> and <math>x \ge -1</math>, we have:<cmath>(1+x)^n \ge 1+nx.</cmath> | ||
− | Rearrangement Inequality | + | ====Rearrangement Inequality==== |
Given that<cmath>x_1 \ge x_2 \ge x_3 \cdots x_n</cmath>and<cmath>y_1 \ge y_2 \ge y_3 \cdots y_n.</cmath>We have:<cmath>x_1y_1+x_2y_2 + \cdots + x_ny_n</cmath>is greater than any other pairings' sum. | Given that<cmath>x_1 \ge x_2 \ge x_3 \cdots x_n</cmath>and<cmath>y_1 \ge y_2 \ge y_3 \cdots y_n.</cmath>We have:<cmath>x_1y_1+x_2y_2 + \cdots + x_ny_n</cmath>is greater than any other pairings' sum. | ||
Line 40: | Line 42: | ||
==Combinatorics== | ==Combinatorics== | ||
+ | |||
+ | ok look bro | ||
+ | |||
+ | <math>a^2+b^2=c^2</math> | ||
+ | |||
+ | lol | ||
+ | |||
+ | <math>\phi{n} \equiv 1 \pmod{asdf}</math>. | ||
+ | |||
==Number Theory== | ==Number Theory== | ||
==Geometry== | ==Geometry== | ||
+ | |||
+ | hahaha | ||
+ | |||
+ | geometry sucks | ||
+ | |||
+ | ~Lcz 5:02 PM CST, 6/25/2020 |
Latest revision as of 12:59, 22 July 2020
Contents
Introduction
SINCE MY COMPUTER WON'T LOAD THIS FOR SOME REASON, I'LL BE UPDATING THIS AS I GO THOUGH :)
Ok, so inspired by master math solver Lcz, I have decided to take Oly notes (for me) online! I'll probably be yelled at even more for staring at the computer, but I know that this is for my good. (Also this thing is almost the exact same format as Lcz's :P ). (Ok, actually, a LOT of credits to Lcz)
NEVERYMIND I"M DOING THIS ON MY BLOG SINCE IT"LL LOAD
Algebra
Problems worth noting/reviewing I'll leave this empty for now, I want to start on HARD stuff yeah!
Inequalities
We shall begin with INEQUALITIES! They should be fun enough. I should probably begin with some theorems.
Power mean (special case)
Statement: Given that , where . Define the as:where , and:where .
If , then
Power mean (weighted)
Statement: Let be positive real numbers. Let be positive real numbers ("weights") such that . For any ,
if ,
.
if ,
.
If , then . Equality occurs if and only if all the are equal.
Cauchy-Swartz Inequality
Let there be two sets of integers, and , such that is a positive integer, where all members of the sequences are real, then we have:Equality holds if for all , where , , or for all , where , ., or we have some constant such that for all .
Bernoulli's Inequality
Given that , are real numbers such that and , we have:
Rearrangement Inequality
Given thatandWe have:is greater than any other pairings' sum.
Holder's Inequality
If , , , are nonnegative real numbers and are nonnegative reals with sum of , then:This is a generalization of the Cauchy Swartz Inequality.
Combinatorics
ok look bro
lol
.
Number Theory
Geometry
hahaha
geometry sucks
~Lcz 5:02 PM CST, 6/25/2020