Difference between revisions of "2006 AMC 10B Problems/Problem 2"

(Solution)
 
Line 7: Line 7:
 
Since <math> x \spadesuit y = (x+y)(x-y) </math>:  
 
Since <math> x \spadesuit y = (x+y)(x-y) </math>:  
  
<math> 3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = -72 \Rightarrow \boxed{A}</math>
+
<math> 3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = \boxed{\textbf{(A)}-72}</math>
  
 
== See Also ==
 
== See Also ==

Latest revision as of 09:33, 19 December 2021

Problem

For real numbers $x$ and $y$, define $x \spadesuit y = (x+y)(x-y)$. What is $3 \spadesuit (4 \spadesuit 5)$?

$\mathrm{(A) \ } -72\qquad \mathrm{(B) \ } -27\qquad \mathrm{(C) \ } -24\qquad \mathrm{(D) \ } 24\qquad \mathrm{(E) \ } 72$

Solution

Since $x \spadesuit y = (x+y)(x-y)$:

$3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit((4+5)(4-5)) =  3 \spadesuit (-9) = (3+(-9))(3-(-9)) = \boxed{\textbf{(A)}-72}$

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png