Difference between revisions of "1999 AIME Problems/Problem 14"
m |
(→Solution) |
||
(16 intermediate revisions by 10 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Point <math> | + | [[Point]] <math>P_{}</math> is located inside [[triangle]] <math>ABC</math> so that [[angle]]s <math>PAB, PBC,</math> and <math>PCA</math> are all congruent. The sides of the triangle have lengths <math>AB=13, BC=14,</math> and <math>CA=15,</math> and the [[tangent]] of angle <math>PAB</math> is <math>m/n,</math> where <math>m_{}</math> and <math>n_{}</math> are relatively [[prime]] positive integers. Find <math>m+n.</math> |
+ | __TOC__ | ||
== Solution == | == Solution == | ||
+ | <center><asy> | ||
+ | real theta = 29.66115; /* arctan(168/295) to five decimal places .. don't know other ways to construct Brocard */ | ||
+ | pathpen = black +linewidth(0.65); pointpen = black; | ||
+ | pair A=(0,0),B=(13,0),C=IP(circle(A,15),circle(B,14)); | ||
+ | D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); | ||
+ | |||
+ | /* constructing P, C is there as check */ | ||
+ | pair Aa=A+(B-A)*dir(theta),Ba=B+(C-B)*dir(theta),Ca=C+(A-C)*dir(theta), P=IP(A--Aa,B--Ba); | ||
+ | D(A--MP("P",P,NW)--B);D(P--C); | ||
+ | D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30)); | ||
+ | MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE); | ||
+ | </asy></center> | ||
+ | <!--This image does exist now: [[Image:1999_AIME-14.png]]--> | ||
+ | |||
+ | === Solution 1 === | ||
+ | Drop [[perpendicular]]s from <math>P</math> to the three sides of <math>\triangle ABC</math> and let them meet <math>\overline{AB}, \overline{BC},</math> and <math>\overline{CA}</math> at <math>D, E,</math> and <math>F</math> respectively. | ||
+ | |||
+ | <center><asy> | ||
+ | import olympiad; | ||
+ | real theta = 29.66115; /* arctan(168/295) to five decimal places .. don't know other ways to construct Brocard */ | ||
+ | pathpen = black +linewidth(0.65); pointpen = black; | ||
+ | pair A=(0,0),B=(13,0),C=IP(circle(A,15),circle(B,14)); | ||
+ | D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); | ||
+ | |||
+ | /* constructing P, C is there as check */ | ||
+ | pair Aa=A+(B-A)*dir(theta),Ba=B+(C-B)*dir(theta),Ca=C+(A-C)*dir(theta), P=IP(A--Aa,B--Ba); | ||
+ | D(A--MP("P",P,SSW)--B);D(P--C); | ||
+ | D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30)); | ||
+ | MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE); | ||
+ | |||
+ | /* constructing D,E,F as foot of perps from P */ | ||
+ | pair D=foot(P,A,B),E=foot(P,B,C),F=foot(P,C,A); | ||
+ | D(MP("D",D,NE)--P--MP("E",E,SSW),dashed);D(P--MP("F",F),dashed); | ||
+ | D(rightanglemark(P,E,C,15));D(rightanglemark(P,F,C,15));D(rightanglemark(P,D,A,15)); | ||
+ | </asy></center> | ||
+ | |||
+ | Let <math>BE = x, CF = y,</math> and <math>AD = z</math>. We have that | ||
+ | <cmath> | ||
+ | \begin{align*}DP&=z\tan\theta\\ | ||
+ | EP&=x\tan\theta\\ | ||
+ | FP&=y\tan\theta\end{align*} | ||
+ | </cmath> | ||
+ | We can then use the tool of calculating area in two ways | ||
+ | <cmath> | ||
+ | \begin{align*}[ABC]&=[PAB]+[PBC]+[PCA]\\ | ||
+ | &=\frac{1}{2}(13)(z\tan\theta)+\frac{1}{2}(14)(x\tan\theta)+\frac{1}{2}(15)(y\tan\theta)\\ | ||
+ | &=\frac{1}{2}\tan\theta(13z+14x+15y)\end{align*} | ||
+ | </cmath> | ||
+ | On the other hand, | ||
+ | <cmath> | ||
+ | \begin{align*}[ABC]&=\sqrt{s(s-a)(s-b)(s-c)}\\ | ||
+ | &=\sqrt{21\cdot6\cdot7\cdot8}\\ | ||
+ | &=84\end{align*} | ||
+ | </cmath> | ||
+ | We still need <math>13z+14x+15y</math> though. We have all these [[right triangle]]s and we haven't even touched [[Pythagorean theorem|Pythagoras]]. So we give it a shot: | ||
+ | <cmath> | ||
+ | \begin{align}x^2+x^2\tan^2\theta&=z^2\tan^2\theta+(13-z)^2\\ | ||
+ | z^2+z^2\tan^2\theta&=y^2\tan^2\theta+(15-y)^2\\ | ||
+ | y^2+y^2\tan^2\theta&=x^2\tan^2\theta+(14-x)^2\end{align} | ||
+ | </cmath> | ||
+ | Adding <math>(1) + (2) + (3)</math> gives | ||
+ | <cmath> | ||
+ | \begin{align*}x^2+y^2+z^2&=(14-x)^2+(15-y)^2+(13-z)^2\\ | ||
+ | \Rightarrow13z+14x+15y&=295\end{align*} | ||
+ | </cmath> | ||
+ | Recall that we found that <math>[ABC]=\frac{1}{2}\tan\theta(13z+14x+15y)=84</math>. Plugging in <math>13z+14x+15y=295</math>, we get <math>\tan\theta=\frac{168}{295}</math>, giving us <math>\boxed{463}</math> for an answer. | ||
+ | |||
+ | === Solution 2 === | ||
+ | Let <math>AB=c</math>, <math>BC=a</math>, <math>AC=b</math>, <math>PA=x</math>, <math>PB=y</math>, and <math>PC=z</math>. | ||
+ | |||
+ | So by the [[Law of Cosines]], we have: | ||
+ | <cmath> | ||
+ | \begin{align*}x^2 &= z^2 + b^2 - 2bz\cos{\theta}\\ | ||
+ | y^2 &= x^2 + c^2 - 2cx\cos{\theta}\\ | ||
+ | z^2 &= y^2 + a^2 - 2ay\cos{\theta}\end{align*} | ||
+ | </cmath> | ||
+ | Adding these equations and rearranging, we have: | ||
+ | <cmath> | ||
+ | a^2 + b^2 + c^2 = (2bz + 2cx + 2ay)\cos{\theta}\qquad(1) | ||
+ | </cmath> | ||
+ | Now <math>[CAP] + [ABP] + [BCP] = [ABC] = \sqrt {(21)(8)(7)(6)} = 84</math>, by [[Heron's formula]]. | ||
+ | |||
+ | Now the area of a triangle, <math>[A] = \frac {mn\sin{\beta}}{2}</math>, where <math>m</math> and <math>n</math> are sides on either side of an angle, <math>\beta</math>. So, | ||
+ | <cmath> | ||
+ | \begin{align*}[CAP] &= \frac {bz\sin{\theta}}{2}\\ | ||
+ | [ABP] &= \frac {cx\sin{\theta}}{2}\\ | ||
+ | [BCP] &= \frac {ay\sin{\theta}}{2}\end{align*} | ||
+ | </cmath> | ||
+ | Adding these equations yields: | ||
+ | <cmath>\begin{align*}[ABC]= 84 &= \frac {(bz + cx + ay)\sin{\theta}}{2}\\ | ||
+ | \Rightarrow 168&= (bz + cx + ay)\sin{\theta}\qquad (2)\end{align*} | ||
+ | </cmath> | ||
+ | Dividing <math>(2)</math> by <math>(1)</math>, we have: | ||
+ | <cmath> | ||
+ | \begin{align*}\frac {168}{a^2 + b^2 + c^2} &= \frac {(bz + cx + ay)\sin{\theta}}{(2bz + 2cx + 2ay)\cos{\theta}}\\ | ||
+ | \Rightarrow \tan{\theta} = \frac {336}{a^2 + b^2 + c^2} &= \frac {336}{14^2 + 15^2 + 13^2} = \frac {336}{590} = \frac {168}{295}\end{align*} | ||
+ | </cmath> | ||
+ | Thus, <math>m + n = 168 + 295 = \boxed{463}</math>. | ||
+ | |||
+ | Note: In fact, this problem is unfairly easy to those who happen to have learned about Brocard point. The Brocard Angle is given by | ||
+ | <cmath>cot(\theta)=\frac{a^2+b^2+c^2}{4\Delta}</cmath> | ||
+ | |||
+ | === Solution 3 === | ||
+ | |||
+ | Let <math>\angle{PAB} = \angle{PBC} = \angle{PCA} = x.</math> Then, using Law of Cosines on the three triangles containing vertex <math>P,</math> we have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | b^2 &= a^2 + 169 - 26a \cos x \\ | ||
+ | c^2 &= b^2 + 196 - 28b \cos x \\ | ||
+ | a^2 &= c^2 + 225 - 30c \cos x. | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Add the three equations up and rearrange to obtain <cmath>(13a + 14b + 15c) \cos x = 295.</cmath> Also, using <math>[ABC] = \frac{1}{2}ab \sin \angle C</math> we have <cmath>[ABC] = [APB] + [BPC] + [CPA] = \dfrac{\sin x}{2}(13a + 14b + 15c) = 84 \iff (13a + 14b + 15c) \sin x = 168.</cmath> Divide the two equations to obtain <math>\tan x = \frac{168}{295} \iff \boxed{463}.~\square</math> | ||
+ | |||
+ | |||
+ | === Solution 4 (Law of sines) === | ||
+ | Firstly, denote angles <math>ABC</math>, <math>BCA</math>, and <math>CAB</math> as <math>B</math>, <math>A</math>, and <math>C</math> respectively. Let <math>\angle{PAB}=x</math>. | ||
+ | Notice that by angle chasing that <math>\angle{BPC}=180-C</math> and <math>\angle{BPA}=180-B</math>. | ||
+ | Using the nice properties of the 13-14-15 triangle, we have <math>\sin B = \frac{12}{13}</math> and <math>\sin C = \frac{4}{5}</math>. <math>\cos C</math> is easily computed, so we have <math>\cos C=\frac{3}{5}</math>. | ||
+ | |||
+ | Using Law of Sines, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac{BP}{\sin x} &= \frac{13}{\sin (180 - B)} \\ | ||
+ | \frac{BP}{\sin (C - x)} &= \frac{14}{\sin (180 - C)} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | hence, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac{BP}{\sin x} &= \frac{13}{\sin B} \\ | ||
+ | \frac{BP}{\sin (C - x)} &= \frac{14}{\sin C} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Now, computation carries the rest. | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac{13 \sin x}{\sin B} &= \frac{14 \sin (C-x)}{\sin C} \\ | ||
+ | \frac{169 \sin x}{12} &= \frac{210 \sin (C-x)}{12} \\ | ||
+ | 169 \sin x &= 210 (\sin C \cos x - \cos C \sin x) \\ | ||
+ | 169 \sin x &= 210 (\frac{4}{5} \cos x - \frac{3}{5} \sin x) \\ | ||
+ | 169 \sin x &= 168 \cos x - 126 \sin x \\ | ||
+ | 295 \sin x &= 168 \cos x \\ | ||
+ | \tan x &= \frac{168}{295} | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Extracting yields <math>168 + 295 = \boxed{463}</math>. | ||
== See also == | == See also == | ||
− | * [[ | + | *[[Brocard point]] |
− | + | {{AIME box|year=1999|num-b=13|num-a=15}} | |
− | + | ||
+ | [[Category:Intermediate Geometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 12:25, 22 December 2022
Problem
Point is located inside triangle
so that angles
and
are all congruent. The sides of the triangle have lengths
and
and the tangent of angle
is
where
and
are relatively prime positive integers. Find
Contents
Solution
![[asy] real theta = 29.66115; /* arctan(168/295) to five decimal places .. don't know other ways to construct Brocard */ pathpen = black +linewidth(0.65); pointpen = black; pair A=(0,0),B=(13,0),C=IP(circle(A,15),circle(B,14)); D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); /* constructing P, C is there as check */ pair Aa=A+(B-A)*dir(theta),Ba=B+(C-B)*dir(theta),Ca=C+(A-C)*dir(theta), P=IP(A--Aa,B--Ba); D(A--MP("P",P,NW)--B);D(P--C); D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30)); MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE); [/asy]](http://latex.artofproblemsolving.com/0/4/f/04fd050352e1902f94f601dda0ad620a7f5a4364.png)
Solution 1
Drop perpendiculars from to the three sides of
and let them meet
and
at
and
respectively.
![[asy] import olympiad; real theta = 29.66115; /* arctan(168/295) to five decimal places .. don't know other ways to construct Brocard */ pathpen = black +linewidth(0.65); pointpen = black; pair A=(0,0),B=(13,0),C=IP(circle(A,15),circle(B,14)); D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); /* constructing P, C is there as check */ pair Aa=A+(B-A)*dir(theta),Ba=B+(C-B)*dir(theta),Ca=C+(A-C)*dir(theta), P=IP(A--Aa,B--Ba); D(A--MP("P",P,SSW)--B);D(P--C); D(anglemark(B,A,P,30));D(anglemark(C,B,P,30));D(anglemark(A,C,P,30)); MP("13",(A+B)/2,S);MP("15",(A+C)/2,NW);MP("14",(C+B)/2,NE); /* constructing D,E,F as foot of perps from P */ pair D=foot(P,A,B),E=foot(P,B,C),F=foot(P,C,A); D(MP("D",D,NE)--P--MP("E",E,SSW),dashed);D(P--MP("F",F),dashed); D(rightanglemark(P,E,C,15));D(rightanglemark(P,F,C,15));D(rightanglemark(P,D,A,15)); [/asy]](http://latex.artofproblemsolving.com/f/b/1/fb1fb1dbb7c63477a671fab2b88af58222cc2d43.png)
Let and
. We have that
We can then use the tool of calculating area in two ways
On the other hand,
We still need
though. We have all these right triangles and we haven't even touched Pythagoras. So we give it a shot:
Adding
gives
Recall that we found that
. Plugging in
, we get
, giving us
for an answer.
Solution 2
Let ,
,
,
,
, and
.
So by the Law of Cosines, we have:
Adding these equations and rearranging, we have:
Now
, by Heron's formula.
Now the area of a triangle, , where
and
are sides on either side of an angle,
. So,
Adding these equations yields:
Dividing
by
, we have:
Thus,
.
Note: In fact, this problem is unfairly easy to those who happen to have learned about Brocard point. The Brocard Angle is given by
Solution 3
Let Then, using Law of Cosines on the three triangles containing vertex
we have
Add the three equations up and rearrange to obtain
Also, using
we have
Divide the two equations to obtain
Solution 4 (Law of sines)
Firstly, denote angles ,
, and
as
,
, and
respectively. Let
.
Notice that by angle chasing that
and
.
Using the nice properties of the 13-14-15 triangle, we have
and
.
is easily computed, so we have
.
Using Law of Sines,
hence,
Now, computation carries the rest.
Extracting yields
.
See also
1999 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.