|
|
(34 intermediate revisions by 17 users not shown) |
Line 1: |
Line 1: |
− | '''Ceva's Theorem''' is an algebraic statement regarding the lengths of [[Cevian|cevians]] in a [[triangle]].
| + | #REDIRECT[[Ceva's theorem]] |
− | | |
− | | |
− | == Statement ==
| |
− | A [[necessary and sufficient]] condition for <math>AD, BE, CF,</math> where <math>D, E,</math> and <math>F</math> are points of the respective side lines <math>BC, CA, AB</math> of a triangle <math>ABC</math>, to be concurrent is that
| |
− | <br><center><math>BD\cdot CE\cdot AF = DC \cdot EA \cdot FB</math></center><br>
| |
− | where all segments in the formula are [[directed segments]].
| |
− | | |
− | [[Image:Ceva1.PNG|center]]
| |
− | | |
− | == Proof ==
| |
− | Letting the [[altitude]] from <math>A</math> to <math>BC</math> have length <math>h</math> we have <math>[ABD]=\frac 12 BD\cdot h</math> and <math>[ACD]=\frac 12 DC\cdot h</math> where the brackets represent [[area]]. Thus <math>\frac{[ABD]}{[ACD]} = \frac{BD}{DC}</math>. In the same manner, we find that <math>\frac{[XBD]}{[XCD]} = \frac{BD}{DC}</math>. Thus <center><math> \frac{BD}{DC} = \frac{[ABD]}{[ACD]} = \frac{[XBD]}{[XCD]} = \frac{[ABD]-[XBD]}{[ACD]-[XCD]} = \frac{[ABX]}{[ACX]}. </math></center>
| |
− | | |
− | Likewise, we find that
| |
− | | |
− | {| class="wikitable" style="margin: 1em auto 1em auto;height:100px"
| |
− | | <math>\frac{CE}{EA}</math> || <math>=\frac{[BCX]}{[ABX]}</math>
| |
− | |-
| |
− | | <math>\frac{AF}{FB}</math> || <math>=\frac{[ACX]}{[BCX]}</math>
| |
− | |}
| |
− | | |
− | Thus <center><math> \frac{BD}{DC}\cdot \frac{CE}{EA}\cdot \frac{AF}{FB} = \frac{[ABX]}{[ACX]}\cdot \frac{[BCX]}{[ABX]}\cdot \frac{[ACX]}{[BCX]} = 1 \Rightarrow BD\cdot CE\cdot AF = DC \cdot EA \cdot FB. </math></center>
| |
− | | |
− | <math>\mathcal{QED}</math>
| |
− | | |
− | == Alternate Formulation ==
| |
− | | |
− | The [[trig]] version of Ceva's Theorem states that cevians <math>AD,BE,CF</math> are concurrent if and only if
| |
− | | |
− | <center>$\sin BAD \sin ACF \sin CBE = \sin DAC \sin FCB \sin EBA.$</center>
| |
− | | |
− | === Proof ===
| |
− | | |
− | ''This proof is incomplete. If you can finish it, please do so. Thanks!''
| |
− | | |
− | We will use Ceva's Theorem in the form that was already proven to be true.
| |
− | | |
− | First, we show that if $\sin BAD \sin ACF \sin CBE = \sin DAC \sin FCB \sin EBA$, holds true then $BD\cdot CE\cdot AF = DC \cdot EA \cdot FB$ which gives that the cevians are concurrent by Ceva's Theorem. The [[Law of Sines]] tells us that <center>$\frac{BD}{\sin BAD} = \frac{AB}{\sin ADB} \Leftrightarrow \sin BAD = \frac{BD}{AB\sin ADB}.$</center>
| |
− | | |
− | Likewise, we get
| |
− | | |
− | {| class="wikitable" style="margin: 1em auto 1em auto"
| |
− | |-
| |
− | | $\sin ACF = \frac{AF}{AC\sin CFA}$
| |
− | |-
| |
− | | $\sin CBE = \frac{CE}{BC\sin BEC}$
| |
− | |-
| |
− | | $\sin CAD = \frac{CD}{AC\sin ADC}$
| |
− | |-
| |
− | | $\sin BCF = \frac{BF}{BC\sin BFC}$
| |
− | |-
| |
− | | $\sin ABE = \frac{AE}{AB\sin AEB}$
| |
− | |}
| |
− | | |
− | Thus
| |
− | | |
− | {| class="wikitable"
| |
− | |-
| |
− | | <math>\sin BAD \sin ACF \sin CBE = \sin CAD \sin BCF \sin ABE</math>
| |
− | |-
| |
− | | $\frac{BD}{AB\sin ADB} \cdot \frac{AF}{AC\sin CFA} \cdot \frac{CE}{BC\sin BEC} = \frac{CD}{AC\sin ADC} \cdot \frac{BF}{BC\sin BFC} \cdot \frac{AE}{AB\sin AEB}
| |
− | |}
| |
− | | |
− | == Examples ==
| |
− | # Suppose AB, AC, and BC have lengths 13, 14, and 15. If <math>\frac{AF}{FB} = \frac{2}{5}</math> and <math>\frac{CE}{EA} = \frac{5}{8}</math>. Find BD and DC.<br> <br> If <math>BD = x</math> and <math>DC = y</math>, then <math>10x = 40y</math>, and <math>{x + y = 15}</math>. From this, we find <math>x = 12</math> and <math>y = 3</math>.
| |
− | # See the proof of the concurrency of the altitudes of a triangle at the [[orthocenter]].
| |
− | # See the proof of the concurrency of the perpendicual bisectors of a triangle at the [[circumcenter]].
| |
− | | |
− | == See also ==
| |
− | * [[Menelaus' Theorem]]
| |
− | * [[Stewart's Theorem]]
| |