Difference between revisions of "2020 AMC 12A Problems/Problem 22"

(Whoops Fixed My Silly Mistake)
(Solution 4 - Author : Shiva Kumar Kannan - IN PROGRESS, PLEASE DO NOT MESS)
 
(19 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
 
Let <math>(a_n)</math> and <math>(b_n)</math> be the sequences of real numbers such that
 
Let <math>(a_n)</math> and <math>(b_n)</math> be the sequences of real numbers such that
 
<cmath>\[
 
<cmath>\[
 
(2 + i)^n = a_n + b_ni
 
(2 + i)^n = a_n + b_ni
 
\]</cmath>for all integers <math>n\geq 0</math>, where <math>i = \sqrt{-1}</math>. What is<cmath>\sum_{n=0}^\infty\frac{a_nb_n}{7^n}\,?</cmath>
 
\]</cmath>for all integers <math>n\geq 0</math>, where <math>i = \sqrt{-1}</math>. What is<cmath>\sum_{n=0}^\infty\frac{a_nb_n}{7^n}\,?</cmath>
 +
 
<math>\textbf{(A) }\frac 38\qquad\textbf{(B) }\frac7{16}\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac9{16}\qquad\textbf{(E) }\frac47</math>
 
<math>\textbf{(A) }\frac 38\qquad\textbf{(B) }\frac7{16}\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac9{16}\qquad\textbf{(E) }\frac47</math>
  
 
== Solution 1 ==
 
== Solution 1 ==
 
 
Square the given equality to yield
 
Square the given equality to yield
 
<cmath>
 
<cmath>
Line 19: Line 18:
  
 
== Solution 2 (DeMoivre's Formula) ==
 
== Solution 2 (DeMoivre's Formula) ==
Note that <math>(2+i) = \sqrt{5} \cdot \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}i \right)</math>. Let <math>\theta = \arctan (1/2)</math>, then, we know that <math>(2+i) = \sqrt{5} \cdot \left( \cos \theta + i\sin \theta \right)</math>, so <math>(2+i)^n = (\cos (n \theta) + i\sin (n\theta))(\sqrt{5})^n</math>. Therefore, <math>\sum_{n=0}^\infty\frac{a_nb_n}{7^n} = \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} =</math> <math>\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta) = \frac{1}{2} \text{im} \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right)</math>. Aha <math>\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} </math> is a geometric sequence that evaluates to <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}}</math>. We can quickly see that <math>\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5}</math>. <math>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}</math>. Therefore, <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i</math>. The imaginary part is <math>\frac{7}{8}</math>, so our answer is <math>\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}}</math>.(Which is answer choice <math>\textbf{(B)}</math>
+
Note that <math>(2+i) = \sqrt{5} \cdot \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}i \right)</math>. Let <math>\theta = \arctan (1/2)</math>, then, we know that <cmath>(2+i) = \sqrt{5} \cdot \left( \cos \theta + i\sin \theta \right),</cmath> so <cmath>(2+i)^n = (\cos (n \theta) + i\sin (n\theta))(\sqrt{5})^n.</cmath> Therefore,  
 +
<cmath>\begin{align*}
 +
\sum_{n=0}^\infty\frac{a_nb_n}{7^n} &= \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} \\
 +
&=\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta)\\
 +
&=\frac{1}{2} \operatorname{Im} \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right).
 +
\end{align*}</cmath>
 +
 
 +
Aha! <math>\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} </math> is a geometric sequence that evaluates to <math>\frac{1}{1-\frac{5}{7}e^{2\theta i}}</math>! Now we can quickly see that <cmath>\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5},</cmath> <cmath>\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}.</cmath> Therefore, <cmath>\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i.</cmath> The imaginary part is <math>\frac{7}{8}</math>, so our answer is <math>\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}} \Rightarrow \textbf{(B)}</math>.
 +
 
 +
~AopsUser101
  
~AopsUser101, minor edit by vsamc stating that the answer choice is B
+
== Solution 3 ==
==Solution 3==
+
Clearly <math>a_n=\tfrac{(2+i)^n+(2-i)^n}{2}, b_n=\tfrac{(2+i)^n-(2-i)^n}{2i}</math>. So we have <math>\sum_{n\ge 0}\tfrac{a_nb_n}{7^n}=\sum_{n\ge 0}\tfrac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4i(7^n)}</math>. By linearity, we have the latter is equivalent to <math>\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</math>. Expanding the summand yields  
Clearly <math>a_n=\tfrac{(2+i)^n+(2-i)^n}{2}, b_n=\tfrac{(2+i)^n-(2-i)^n}{2i}</math>. So we have <math>\sum_{n\ge 0}\tfrac{a_nb_n}{7^n}=\sum_{n\ge 0}\tfrac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4i(7^n)}</math>. By linearity, we have the latter is equivalent to <math>\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}</math>. Expanding the summand yields <math>\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{(3+4i)^n-(3-4i)^n}{7^n}=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}-\tfrac{1}{1-(\tfrac{3-4i}{7})}]=\tfrac{1}{4i}[\tfrac{7}{7-(3+4i)}-\tfrac{7}{7-(3-4i)}]=\tfrac{1}{4}[\tfrac{7}{4-4i}-\tfrac{7}{4+4i}]=\tfrac{1}{4i}[\tfrac{7(4+4i)}{32}-\tfrac{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32}=\boxed{\tfrac{7}{16}}\textbf{(B)}</math>
+
<cmath>\begin{align*}
 +
\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{(3+4i)^n-(3-4i)^n}{7^n}&=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}-\tfrac{1}{1-(\tfrac{3-4i}{7})}] \\
 +
&=\tfrac{1}{4i}[\tfrac{7}{7-(3+4i)}-\tfrac{7}{7-(3-4i)}] \\
 +
&=\tfrac{1}{4}[\tfrac{7}{4-4i}-\tfrac{7}{4+4i}] \\
 +
&=\tfrac{1}{4i}[\tfrac{7(4+4i)}{32}-\tfrac{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32} \\
 +
&=\boxed{\tfrac{7}{16}}\textbf{(B)}
 +
\end{align*}</cmath>
 
-vsamc
 
-vsamc
==See Also==
 
  
 +
 +
== Video Solution by Richard Rusczyk ==
 +
https://www.youtube.com/watch?v=OdSTfCDOh5A
 +
 +
- AMBRIGGS
 +
 +
== See Also ==
 
{{AMC12 box|year=2020|ab=A|num-b=21|num-a=23}}
 
{{AMC12 box|year=2020|ab=A|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 23:07, 10 November 2024

Problem

Let $(a_n)$ and $(b_n)$ be the sequences of real numbers such that \[ (2 + i)^n = a_n + b_ni \]for all integers $n\geq 0$, where $i = \sqrt{-1}$. What is\[\sum_{n=0}^\infty\frac{a_nb_n}{7^n}\,?\]

$\textbf{(A) }\frac 38\qquad\textbf{(B) }\frac7{16}\qquad\textbf{(C) }\frac12\qquad\textbf{(D) }\frac9{16}\qquad\textbf{(E) }\frac47$

Solution 1

Square the given equality to yield \[(3 + 4i)^n = (a_n + b_ni)^2 = (a_n^2 - b_n^2) + 2a_nb_ni,\] so $a_nb_n = \tfrac12\operatorname{Im}((3+4i)^n)$ and \[\sum_{n\geq 0}\frac{a_nb_n}{7^n} = \frac12\operatorname{Im}\left(\sum_{n\geq 0}\frac{(3+4i)^n}{7^n}\right) = \frac12\operatorname{Im}\left(\frac{1}{1 - \frac{3 + 4i}7}\right) = \boxed{\frac 7{16}}.\]

Solution 2 (DeMoivre's Formula)

Note that $(2+i) = \sqrt{5} \cdot \left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}i \right)$. Let $\theta = \arctan (1/2)$, then, we know that \[(2+i) = \sqrt{5} \cdot \left( \cos \theta + i\sin \theta \right),\] so \[(2+i)^n = (\cos (n \theta) + i\sin (n\theta))(\sqrt{5})^n.\] Therefore, \begin{align*} \sum_{n=0}^\infty\frac{a_nb_n}{7^n} &= \sum_{n=0}^\infty\frac{\cos(n\theta)\sin(n\theta) (5)^n}{7^n} \\ &=\frac{1}{2}\sum_{n=0}^\infty \left( \frac{5}{7}\right)^n \sin (2n\theta)\\  &=\frac{1}{2} \operatorname{Im} \left( \sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n} \right). \end{align*}

Aha! $\sum_{n=0}^\infty \left( \frac{5}{7} \right)^ne^{2i\theta n}$ is a geometric sequence that evaluates to $\frac{1}{1-\frac{5}{7}e^{2\theta i}}$! Now we can quickly see that \[\sin(2\theta) = 2 \cdot \sin \theta \cdot \cos \theta = 2 \cdot \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{5}} = \frac{4}{5},\] \[\cos (2\theta) = \cos^2 \theta - \sin^2 \theta = \frac{4}{5}-\frac{1}{5} = \frac{3}{5}.\] Therefore, \[\frac{1}{1-\frac{5}{7}e^{2\theta i}} = \frac{1}{1 - \frac{5}{7}\left( \frac{3}{5} + \frac{4}{5}i\right)} = \frac{7}{8} + \frac{7}{8}i.\] The imaginary part is $\frac{7}{8}$, so our answer is $\frac{1}{2} \cdot \frac{7}{8} = \boxed{\frac{7}{16}} \Rightarrow \textbf{(B)}$.

~AopsUser101

Solution 3

Clearly $a_n=\tfrac{(2+i)^n+(2-i)^n}{2}, b_n=\tfrac{(2+i)^n-(2-i)^n}{2i}$. So we have $\sum_{n\ge 0}\tfrac{a_nb_n}{7^n}=\sum_{n\ge 0}\tfrac{((2+i)^n+(2-i)^n))((2+i)^n-(2-i)^n))}{4i(7^n)}$. By linearity, we have the latter is equivalent to $\tfrac{1}{4i}\sum_{n\ge 0}\tfrac{[(2+i)^n+(2-i)^n][(2+i)^n-(2-i)^n]}{7^n}$. Expanding the summand yields \begin{align*} \tfrac{1}{4i}\sum_{n\ge 0}\tfrac{(3+4i)^n-(3-4i)^n}{7^n}&=\tfrac{1}{4}[\tfrac{1}{1-(\tfrac{3+4i}{7})}-\tfrac{1}{1-(\tfrac{3-4i}{7})}] \\ &=\tfrac{1}{4i}[\tfrac{7}{7-(3+4i)}-\tfrac{7}{7-(3-4i)}] \\ &=\tfrac{1}{4}[\tfrac{7}{4-4i}-\tfrac{7}{4+4i}] \\ &=\tfrac{1}{4i}[\tfrac{7(4+4i)}{32}-\tfrac{7(4-4i)}{32}]=\tfrac{1}{4}\cdot \tfrac{56}{32} \\ &=\boxed{\tfrac{7}{16}}\textbf{(B)} \end{align*} -vsamc


Video Solution by Richard Rusczyk

https://www.youtube.com/watch?v=OdSTfCDOh5A

- AMBRIGGS

See Also

2020 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png