Difference between revisions of "1954 AHSME Problems/Problem 31"

 
(One intermediate revision by the same user not shown)
Line 8: Line 8:
 
==Solution==
 
==Solution==
  
Since <math>\triangle ABC</math> is an isosceles triangle, <math>\angle ABC = \angle ACB = 70\degree</math>. Let <math>\angle OBC = \angle OCA = x</math>. Since <math>\angle ACB = 70</math>, <math>\angle OCB = 70 - x</math>. The angle of <math>\triangle OBC</math> add up to <math>180</math>, so <math>\angle BOC = 180 - (x + 70 - x) = \boxed{\textbf{(A) } 110\degree</math>.
+
Since <math>\triangle ABC</math> is an isosceles triangle, <math>\angle ABC = \angle ACB = 70^{\circ}</math>. Let <math>\angle OBC = \angle OCA = x</math>. Since <math>\angle ACB = 70</math>, <math>\angle OCB = 70 - x</math>. The angle of <math>\triangle OBC</math> add up to <math>180</math>, so <math>\angle BOC = 180 - (x + 70 - x) = \boxed{\textbf{(A) } 110^{\circ}}</math>.
  
 
==See Also==
 
==See Also==

Latest revision as of 00:51, 28 February 2020

Problem

In $\triangle ABC$, $AB=AC$, $\angle A=40^\circ$. Point $O$ is within the triangle with $\angle OBC \cong \angle OCA$. The number of degrees in $\angle BOC$ is:

$\textbf{(A)}\ 110^{\circ} \qquad \textbf{(B)}\ 35^{\circ} \qquad \textbf{(C)}\ 140^{\circ} \qquad \textbf{(D)}\ 55^{\circ} \qquad \textbf{(E)}\ 70^{\circ}$

Solution

Since $\triangle ABC$ is an isosceles triangle, $\angle ABC = \angle ACB = 70^{\circ}$. Let $\angle OBC = \angle OCA = x$. Since $\angle ACB = 70$, $\angle OCB = 70 - x$. The angle of $\triangle OBC$ add up to $180$, so $\angle BOC = 180 - (x + 70 - x) = \boxed{\textbf{(A) } 110^{\circ}}$.

See Also

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 30
Followed by
Problem 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png