Difference between revisions of "Specimen Cyprus Seniors Provincial/2nd grade/Problem 2"
m |
(added solution) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | If <math>\alpha= | + | If <math>\alpha=\sin x_{1}</math>,<math>\beta=\cos x_{1}\sin x_{2}</math>, <math>\gamma=\cos x_{1}\cos x_{2} \sin x_{3}</math> and <math>\delta=\cos x_{1}\cos x_{2}\cos x_{3}</math> prove that <math>\alpha^2+\beta^2+\gamma^2+\delta^2=1</math> |
+ | |||
== Solution == | == Solution == | ||
+ | Plug in the expressions for <math>\alpha</math>, <math>\beta</math>, <math>\gamma</math>, and <math>\delta</math>. | ||
+ | |||
+ | <math>\alpha^2+\beta^2+\gamma^2+\delta^2=</math> <math>\sin^2x_1 + \cos^2x_{1}\sin^2x_{2} + \cos^2x_{1}\cos^2x_{2} \sin^2x_{3} + \cos^2x_{1}\cos^2x_{2} \cos^2x_{3}</math> | ||
+ | |||
+ | |||
+ | Factor the last two terms: | ||
+ | |||
+ | <math>\alpha^2+\beta^2+\gamma^2+\delta^2=</math> <math>\sin^2x_1 + \cos^2x_{1}\sin^2x_{2} + (\cos^2x_{1}\cos^2x_{2})(\sin^2x_{3}+\cos^2x_{3})</math> | ||
+ | |||
+ | |||
+ | Use the identity <math>\cos^2x + \sin^2x = 1</math>: | ||
+ | |||
+ | <math>\alpha^2+\beta^2+\gamma^2+\delta^2=</math> <math>\sin^2x_1 + \cos^2x_{1}\sin^2x_{2} + \cos^2x_{1}\cos^2x_{2}</math> | ||
+ | |||
+ | |||
+ | Factor the last two terms: | ||
+ | |||
+ | <math>\alpha^2+\beta^2+\gamma^2+\delta^2=</math> <math>\sin^2x_1 + (\cos^2x_{1})(\sin^2x_{2}+\cos^2x_{2})</math> | ||
+ | |||
+ | |||
+ | Use the identity <math>\cos^2x + \sin^2x = 1</math>: | ||
+ | |||
+ | <math>\alpha^2+\beta^2+\gamma^2+\delta^2=</math> <math>\sin^2x_1 + \cos^2x_{1}</math> | ||
+ | |||
+ | |||
+ | Use the identity <math>\cos^2x + \sin^2x = 1</math>: | ||
+ | |||
+ | <math>\alpha^2+\beta^2+\gamma^2+\delta^2=</math> <math>1</math> | ||
+ | <math>\boxed{\mathbb{Q.E.D}}</math> | ||
Latest revision as of 22:11, 22 May 2009
Problem
If ,, and prove that
Solution
Plug in the expressions for , , , and .
Factor the last two terms:
Use the identity :
Factor the last two terms:
Use the identity :
Use the identity :