Difference between revisions of "1965 AHSME Problems/Problem 6"

(Created page with "== Problem 6== If <math>10^{\log_{10}9} = 8x + 5</math> then <math>x</math> equals: <math>\textbf{(A)}\ 0 \qquad \textbf{(B) }\ \frac {1}{2} \qquad \textbf{(C) }\ \frac {...")
 
m (maa notice)
 
(One intermediate revision by the same user not shown)
Line 11: Line 11:
 
==Solution==
 
==Solution==
 
Notice that <math>10^{\log_{10} 9} = 9</math>. Therefore, the condition we are looking for is <math>9=8x+5</math>, or <math>x=\frac{1}{2}</math>. <math>\text{So the answer is }  \boxed{\textbf{(B)}}</math>
 
Notice that <math>10^{\log_{10} 9} = 9</math>. Therefore, the condition we are looking for is <math>9=8x+5</math>, or <math>x=\frac{1}{2}</math>. <math>\text{So the answer is }  \boxed{\textbf{(B)}}</math>
 +
 +
==See Also==
 +
{{AHSME 40p box|year=1965|num-b=5|num-a=7}}
 +
{{MAA Notice}}
 +
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 16:04, 18 July 2024

Problem 6

If $10^{\log_{10}9} = 8x + 5$ then $x$ equals:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ \frac {1}{2} \qquad  \textbf{(C) }\ \frac {5}{8} \qquad  \textbf{(D) }\ \frac{9}{8}\qquad \textbf{(E) }\ \frac{2\log_{10}3-5}{8}$

Solution

Notice that $10^{\log_{10} 9} = 9$. Therefore, the condition we are looking for is $9=8x+5$, or $x=\frac{1}{2}$. $\text{So the answer is }  \boxed{\textbf{(B)}}$

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png