Difference between revisions of "1953 AHSME Problems/Problem 26"

m
(Problem 26)
 
(One intermediate revision by one other user not shown)
Line 7: Line 7:
 
\textbf{(C)}\ 4\sqrt{3}\text{ inches}\qquad
 
\textbf{(C)}\ 4\sqrt{3}\text{ inches}\qquad
 
\textbf{(D)}\ 7.5\text{ inches}\\  
 
\textbf{(D)}\ 7.5\text{ inches}\\  
\textbf{(E)}\ \text{none of these}    </math>
+
\textbf{(4)}\ \text{none of these}    </math>
  
 
==Solution==
 
==Solution==

Latest revision as of 21:51, 24 February 2020

Problem 26

The base of a triangle is $15$ inches. Two lines are drawn parallel to the base, terminating in the other two sides, and dividing the triangle into three equal areas. The length of the parallel closer to the base is:

$\textbf{(A)}\ 5\sqrt{6}\text{ inches} \qquad \textbf{(B)}\ 10\text{ inches} \qquad \textbf{(C)}\ 4\sqrt{3}\text{ inches}\qquad \textbf{(D)}\ 7.5\text{ inches}\\  \textbf{(4)}\ \text{none of these}$

Solution

Let the triangle be $\triangle ABC$ where $BC$ is the base. Then let the parallels be $MN$ and $PQ$, where $PQ$ is closer to our base $BC$.

It's obvious that $\triangle APQ \sim \triangle ABC$, where $|\triangle APQ|:|\triangle ABC|=2:3$, so $\frac{PQ}{BC}=\sqrt{\frac{2}{3}}$. Since we know $BC=15$, $PQ=\frac{15\sqrt{2}}{\sqrt{3}}=5\sqrt{6}$

Hence our answer is $\textbf{(A)}$

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png